• 제목/요약/키워드: Chlorophyll fluorescence

검색결과 301건 처리시간 0.027초

An Overview of Remote Sensing of Chlorophyll Fluorescence

  • Xing, Xiao-Gang;Zhao, Dong-Zhi;Liu, Yu-Guang;Yang, Jian-Hong;Xiu, Peng;Wang, Lin
    • Ocean Science Journal
    • /
    • 제42권1호
    • /
    • pp.49-59
    • /
    • 2007
  • Besides empirical algorithms with the blue-green ratio, the algorithms based on fluorescence are also important and valid methods for retrieving chlorophyll-a concentration in the ocean waters, especially for Case II waters and the sea with algal blooming. This study reviews the history of initial cognitions, investigations and detailed approaches towards chlorophyll fluorescence, and then introduces the biological mechanism of fluorescence remote sensing and main spectral characteristics such as the positive correlation between fluorescence and chlorophyll concentration, the red shift phenomena. Meanwhile, there exist many influence factors that increase complexity of fluorescence remote sensing, such as fluorescence quantum yield, physiological status of various algae, substances with related optical property in the ocean, atmospheric absorption etc. Based on these cognitions, scientists have found two ways to calculate the amount of fluorescence detected by ocean color sensors: fluorescence line height and reflectance ratio. These two ways are currently the foundation for retrieval of chlorophyll-a concentration in the ocean. As the in-situ measurements and synchronous satellite data are continuously being accumulated, the fluorescence remote sensing of chlorophyll-a concentration in Case II waters should be recognized more thoroughly and new algorithms could be expected.

Developmental Changes in Photosynthetic Pigments and Chlorophyll Fluorescence in Etiolated Rice Seedlings During Greening

  • Chun, Hyun-Sik;Moon, Byoung-Yong;Suh, Kye-Hong;Lee, Chin-Bum
    • Journal of Plant Biology
    • /
    • 제39권4호
    • /
    • pp.309-314
    • /
    • 1996
  • Developmental of photosynthetic pigments and changes in chlorophyll fluorescence of dark-grown rice seedlings were studied during greening. Light-illumination stimulated accumulations of total chlorophylls and carotenoids in leaves of etiolated seedlings, accompanied by a decrease in the ratio of chlorophyll a to chlorophyll b. When the composition of carotenoids was analyzed, violaxanthin level was shown to increase up to 24 h after the beginning of light illumination, followed by a subsequent decline. In contrast to this, zeaxanthin level increased consistently with progress of deetiolatin. The role of zeaxanthin is discussed in relation to chlorophyll fluorescence quenching. A study on chlorophyll fluorescence kinetics of the rice seedlings being deetiolated showed a time-dependent increase in Fv/Fm (yield of variable fluorescence/maximum yield of fluoresecnece) ratios, indicating that greening is responsible for the activation of photochemical reaction centers of the photosystem. When chlorophyll fluorescence quenching was examined, qNP (nonphotochemical quenching) and qE (energy-dependent quenching) exhibited a time-dependent decline with progress of greening. The presented results indicate that greening-induced development of the photosynthetic machinery is associated the conversion of the carotenoid violaxanthin to zeaxanthin, suggesting that zeaxanthin synthesized in the illuminated leaves may provide the protection from the damage when etiolated plants are exposed to light.

  • PDF

Use of Chlorophyll a Fluorescence Imaging for Photochemical Stress Assessment in Maize (Zea mays L.) Leaf under Hot Air Condition

  • Park, Jong Yong;Yoo, Sung Young;Kang, Hong Gyu;Kim, Tae Wan
    • 한국작물학회지
    • /
    • 제61권4호
    • /
    • pp.270-276
    • /
    • 2016
  • The objective of this study was to find a rapid determination of the hot air stress in maize (Zea mays L.) leaves using a portable chlorophyll fluorescence imaging instrument. To assess the photosynthetic activity of maize leaves, an imaging analysis of the photochemical responses of maize was performed with chlorophyll fluorescence camera. The observed chlorophyll imaging photos were numerically transformed to the photochemical parameters on the basis of chlorophyll a fluorescence. Chlorophyll a fluorescence imaging (CFI) method showed that a rapid decrease in maximum fluorescence intensity ($F_m$) of leaf occurred under hot air stress. Although no change was observed in the maximum quantum yield ($F_v/F_m$) of the hot air stressed maize leaves, the other photochemical parameters such as maximum fluorescence intensity ($F_m$) and Maximum fluorescence value ($F_p$) were relatively lowered after hot air stress. In hot air stressed maize leaves, an increase was observed in the nonphotoquenching (NPQ) and decrease in the effective quantum yield of photochemical energy conversion in photosystem II (${\Phi}PSII$). Thus, NPQ and ${\Phi}PSII$ were available to be determined non-destructively in maize leaves under hot air stress. Our results clearly indicated that the hot air could be a source of stress in maize leaves. Thus, the CFI analysis along with its related parameters can be used as a rapid indicating technique for the determining hot air stress in plants.

구리${\cdot}$아연과 비교한 보리 엽록체의 광합성 기구에 미치는 수은 이온의 특이한 효과 (Mercury-Specific Effects on Photosynthetic apparatus of Barley Chloroplasts Compared with Copper and Zinc Ions)

  • 문병용;전현식
    • 한국환경과학회지
    • /
    • 제1권1호
    • /
    • pp.1.1-11
    • /
    • 1992
  • To find heavy metal-specific effects on the photosynthetic apparatus of higher plants, we investigated effects of $CuCl_2$, HgCl_2$ and $ZnCl_2$ on electron transport activity and chlorophyll fluorescence induction kinetics of chloroplasts isolated from barley seedlings. Effects on some related processes such as germination, growth and photosynthetic pigments of the test plants were also studied. Germination and growth rate were inhibited in a concentration-dependent manner by these metals. Mercury was shown to be the most potent inhibitor of germination, growth and biosynthesis of photosynthetic pigments of barley plants. In the inhibition of electron transport activity, quantum yield of PS II, and chlorophyll fluorescence induction kinetics of chloroplasts isolated from barley seedlings, mercury chloride showed more pronounced effects than other two metals. Contrary to the effects of other two metals, mercury chloride increased variable fluorescence significantly and abolished qE in the fluorescence induction kinetics from broken chloroplasts of barley seedlings. This increase in variable fluorescence is due to the inhibition of the electron transport chain after PS ll and the following dark reactions. The inhibition of qE could be attributed to the interruption of pH formation and do-epoxidation of violaxathin to zeaxanthin in thylakoids by mercury. This unique effect of mercury on chlorophyll fluorescence induction pattern could be used as a good indicator for testing the presence and/or the concentration of mercury in the samples contaminated with heavy metals.

  • PDF

아열대성 식물 4종의 엽록소형광과 항산화효소 활성의 일주기적 변화 (Diurnal Changes of Chlorophyll Fluorescence and Antioxidative Enzyme Activity of the Leaves from Four Subtropical Plants)

  • 오순자;고창효;고석찬
    • 한국환경과학회지
    • /
    • 제16권5호
    • /
    • pp.633-640
    • /
    • 2007
  • The diurnal changes of chlorophyll fluorescence and antioxidative enzyme activity were investigated in the leaves from four subtropical plant species (Crinum asiaticum var. japonicum Bak., Osmanthus insularis Koidz., Asplenium antiquum Makino and Chloranthus glaber Makino) under the natural habitats in summer and winter. The intensity of chlorophyll fluorescence was lower in O-, I-, J-, P-steps of O-J-I-P transient in winter than summer, and prominent diurnal change was not found in the fluorescence intensity of four subtropical plant species in winter. The activity and isoenzyme pattern of SOD and catalase did irregularly change seasonally and diurnally in four subtropical plant species. In contrast, the peroxidase activity and isoenzyme pattern was different depending on plant species and growth seasons; The activity increased slightly more in winter than in summer in four subtropical plant species, and several isoenzymes appeared in the leaves from C. asiaticum var japonicum, O. insularis and A. antiquum in winter.

NaCI이 보리(Hordeum vulgare L.) 잎의 엽록소 형광에 미치는 영향 (The Effect of NaCI on the Chl Fluorescence of Barley (Hordeum vulgare L.) Leaves)

  • 정화숙;임영진;박강은;박신영
    • 한국환경과학회지
    • /
    • 제13권12호
    • /
    • pp.1015-1021
    • /
    • 2004
  • This study was conducted to investigate the changes of chlorophyll contents and chlorophyll fluorescence in barley(Hordeum vulgare L.) 7 day old seedling treated with 0.2M, 0.4M, 0.6M, 0.8M, and 1.0M NaCI concentration containing Hepes buffer(pH 7.5). Barley was affected by NaCI treatment. The chlorophyll a, b and carotenoid of barley decreased with an increase in NaCI concentration. However, chlorophyll a, b and carotenoid of barley were not greatly influenced by o.8M and 1.0M NaCl. Fv, Fv/Fm and qP were gradually decreased by higher concentration of NaCI. qP, qNP, qR and qE were gradually decreased by 6hr. During barley chloroplast was development NaCI affected chlorophyll synthesis than photosynthetic activity. Whereas barley seedling leaves were more influenced photosynthetic activity than chlorophyll contents by NaCI.

Netplankton과 Nanoplankton 크기별 in vivo Fluorescence의 차이 (Differences in in vivo Fluorescence Yield for Netplankton and Nanoplankton Size Classes)

  • 문창호;이승용
    • 한국수산과학회지
    • /
    • 제27권6호
    • /
    • pp.727-732
    • /
    • 1994
  • 식물플랑크톤의 엽록소 a 당 in vivo fluorescence 세기 (R)가 netplankton과 nanoplankton 사이에 차이가 있는지 남해에서 조사하였다. In vivo fluorescence (IVF)와 엽록소 a는 서로 다른 두 크기의 플랑크톤에서 자각 좋은 상관관계를 보였으나 비율 R은 netplankton과 nanoplankton 사이에 유의적으로 차이가 있었으며 nanoplankton의 R 값이 netplankton 보다 약 7배 높았다. 그러므로 IVF로 식물플랑크톤의 크기별 생물량을 측정할 때 R에 대한 식물플랑크톤 크기의 영향을 고려하여야한다.

  • PDF

DEVELOPMENT OF CHLOROPHYLL ALGORITHM FOR GEOSTATIONARY OCEAN COLOR IMAGER (GOCI)

  • Min, Jee-Eun;Moon, Jeong-Eon;Shanmugam, Palanisamy;Ryu, Joo-Hyung;Ahn, Yu-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.162-165
    • /
    • 2007
  • Chlorophyll concentration is an important factor for physical oceanography as well as biological oceanography. For these necessity many oceanographic researchers have been investigated it for a long time. But investigation using vessel is very inefficient, on the other hands, ocean color remote sensing is a powerful means to get fine-scale (spatial and temporal scale) measurements of chlorophyll concentration. Geostationary Ocean Color Imager (GOCI), for ocean color sensor, loaded on COMS (Communication, Ocean and Meteorological Satellite), will be launched on late 2008 in Korea. According to the necessity of algorithm for GOCI, we developed chlorophyll algorithm for GOCI in this study. There are two types of chlorophyll algorithms. One is an empirical algorithm using band ratio, and the other one is a fluorescence-based algorithms. To develop GOCI chlorophyll algorithm empirically we used bands centered at 412 nm, 443 nm and 555 nm for the DOM absorption, chlorophyll maximum absorption and for absorption of suspended solid material respectively. For the fluorescence-based algorithm we analyzed in-situ remote sensing reflectance $(R_{rs})$ data using baseline method. Fluorescence Line Height $({\Delta}Flu)$ calculated from $R_{rs}$ at bands centered on 681 nm and 688 nm, and ${\Delta}Flu_{(area)}$ are used for development of algorithm. As a result ${\Delta}Flu_{(area)}$ method leads the best fitting for squared correlation coefficient $(R^2)$.

  • PDF

엽록소 형광 분석을 활용한 착색기 감귤의 고온 스트레스 평가 (Chlorophyll Fluorescence Analysis for the Assessment of High Temperature Stress in Citrus During the Coloration Period)

  • 엄태선;장승연;황예빈;유성영;강성구;박지수;김태완
    • 한국환경과학회지
    • /
    • 제33권9호
    • /
    • pp.613-623
    • /
    • 2024
  • This study was conducted in the greenhouse of the Citrus Research Institute of the Rural Development Administration with the aim of analyzing electron transfer efficiency in citrus under high temperatures caused by climate change and selecting photophysiological indicators to identify high temperature resistant varieties. The "Shiranuhi" cultivar showed no change in maximum fluorescence or Origin-Jump transition stage due to the heat treatment. However, chlorophyll fluorescence parameters, such as RC/CS, ABS/CS, and ETo/CS, increased. Consequently, it was judged that there was no decrease in photosynthetic performance due to high temperature. However, compared to mandarin orange, "unshiu Marcow" was found to have damage to the photosynthetic apparatus due to a significant increase in chlorophyll fluorescence in the O-J transition stage. It was also evaluated as Group III, with the lowest level of high-temperature resistance even in the high-temperature stress index analysis using PI ABS, making it the most vulnerable to high temperatures among the five varieties tested. In conclusion, chlorophyll fluorescence reaction analysis can be used for heat cultivation technology by selecting resistant varieties and identifying the appropriate temperatures.

유기용매 중에서 Chlorophyll-b의 흡광 및 형광 (제2보) (The Absorbance and Fluorescence of Chlorophyll-b in Organic Solvents (II))

  • 이중화;김명숙;정구춘;박면용
    • 대한화학회지
    • /
    • 제26권4호
    • /
    • pp.224-228
    • /
    • 1982
  • chl-b를 소중합체로서 용매에 녹였을 때 친핵성 n-prOH를 첨가함에 따라 흡광도와 fluorescence emission의 세기는 증가하였지만 단위체로 녹은 다음에 n-prOH의 농도증가에 따라 점차 감소하였다. chl-b는 소중합체의 생성때문에 Beer 법칙에 따르지 않았으며 용매의 극성변화에 따라 stockes shift를 나타냈다. 이러한 경향성은 chl-b의 정량에 고려하여야될 점이다.

  • PDF