• Title/Summary/Keyword: Chlorophyll a fluorescence

Search Result 238, Processing Time 0.029 seconds

The Effects of Acidic Electrolytic Water on the Development of Barley Chloroplast (산성 전해수가 보리(Hordeum vulgae L.) 엽록체의 발달에 미치는 영향)

  • 정화숙;송승달;노광수;송종석;박강은
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.255-261
    • /
    • 1999
  • To investigate the effects of strong acidic electrolytic water on the chloroplast, barley leaves were treated with strong acidic electrolytic water(pH 2.5). And to investigate the effects of weak acidic electrolytic water on the chloroplast development, etiolated barley leaves were treated with weak acidic electrolytic water(pH 6.5) during greening period. Chl contents, Fo, Fv, and Chl fluorescence quenching coefficient in barley leaves were measured during and after treatment of acidic electrolytic water. The following results were obtained. Chl a, b, and carotenoid were decreased with treatment of strong acidic electrolytic water. Chl contents were significantly decreased than that of the control after 5 min. These results provide evidence that the strong acidic electrolytic water dissimilate the Chl and so that the value of Fo was slightly increased. The strong acidic electrolytic water damaged PS II because Fo was increased and Fv, Fm, and Fv/Fm ratio were decreased. qP, qNP and qE were decreased. On the other hand qI was increased than that of the control. But Chl content and Chl fluorescence patterns were a little changed as the pH increase over 4.0 Chl a, b, and carotenoid were increased with treatment of weak acidic electrolytic water during greening period. Chl contents were significantly increased than that of control after 12 hours greening. These results provide evidence that the weak acidic electrolytic water accelerated the chlorophyll synthesis. And the weak acidic electrolytic water accelerated PS II development because Fv, Fm, qP and Fv/Fm ratio were increased than that of the control.

  • PDF

Effects of Trampling on Growth and Development in Zoysia japonica (답압이 한국잔디의 생육에 미치는 영향)

  • Seo, Jin Yeol;Chung, Jong Il;Kim, Min Chul;Chung, Jung Sung;Shim, Doo Bo;Song, Seon Hwa;Oh, Ji Hyun;Shim, Sang In
    • Weed & Turfgrass Science
    • /
    • v.4 no.3
    • /
    • pp.256-261
    • /
    • 2015
  • Trampling stress in turfgrass fields caused by traffics often occurs in zoysiagrass (Zoysia japonica) fields including golf course. In order to know the influences of trampling stress on the growth and development of turfgrass, leaf and root growth, chlorophyll fluorescence, chlorophyll content and 2-DE protein analysis were conducted in the turfgrass plants subjected to various levels of trampling stress from 0 to $9,420J\;day^{-1}$ day. Shoot growth was more highly inhibited by trampling stress than root growth. Although root growth was affected by trampling with weak intensity, the highest root length was observed in the turfgrass treated with weak trampling ($1,570J\;day^{-1}$). Chlorophyll fluorescence (Fv $Fm^{-1}$) was drastically lowered by trampling stress with moderate intensity. Leaf number showed similar tendency with leaf greenness. The number was decreased as the trampling intensity was increased. Shoot dry weight was decreased showing a similar tendency with the result of shoot length. The specific protein expressions under weak trampling were related to the functions of stress amelioration. Heat shock 70 kDa protein 10 and oxygen-evolving enhancer protein 1 were the proteins increased positively under trampling stress.

Photochemical Index Analysis on Different Shading Level of Garden Plants (정원 식물의 차광 조건별 광화학적 생리지표 해석)

  • Kang, Hong Gyu;Kim, Tae Seong;Park, So Hyun;Kim, Tae Wan;Yoo, Sung Yung
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.264-271
    • /
    • 2016
  • The objective of this study was to determine the growth and light utilization efficiency of garden plants in shade area through chlorophyll fluorescence reaction analysis. Ten garden plants was grown for 75 days under 50% and 80% shading conditions. Under shading, $ET2_O/RC$, the fluorescence parameter related to electron-transport in photosystem II, was effectively enhanced. However, the electron transport flux until PSI acceptors per reaction center ($RE1_O/RC$) was reduced. These changes in photochemical parameters evoked a decrease in performance index (PI) and driving force (DF) of electron transport flux. In addition, some photochemical parameters such as $F_V$, $FV/F_O$, $RE1_O/RC$, $ET2_O/RC$, $PI_{TOTAL\;ABS}$, and $DF_{TOTAL\;ABS}$ were found to be important for shade tolerance. Three species (Pachysandra terminalis Siebold & Zucc, Physostegia virginiana L., and Carex maculata Bott) were found to be shade tolerant. Based on these results, shading factor index (SFI) deduced from photochemical parameters is useful for evaluating of shading stress of garden plants.

A NOVEL PHOTOHETEROTROPHIC MUTANT FOR psaB GENE OF Synechocystis sp. PCC 6803 GENERATED FROM TARGETED MUTAGENESIS

  • Kim, Soohyun;Kim, Seung-Il;Choi, Jong-Soon;Chung, Young-Ho;Chun, Soon-Bai;Park, Young-Mok
    • Journal of Photoscience
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 1996
  • To investigate the structure and function of photosystem I, cartridge mutagenesis technique was used to inactivate the psaB gene of photosystem I. From the screen, many strains which have potential defects in photosystem I were generated. Biochemical analysis revealed that B2, one of the mutant, had a reduced amount of chlorophyll. Electron transfer activitx from photosystem II to photosystem I as oxygen uptake was the rate of 64 % of wild type. Also B2 showed a decreased photosystem I activity when measured by 77 K fluorescence emission spectrum. Particularly, immunodetection analysis showed that the B2 had reduced amount of PsaA/PsaB, but a normal range of PsaC and PsaD. Here we present a photoheterotrophic mutant for psaB gene as a unique model strain for future study of structural/functional relationship and biogenesis of photosystem I.

  • PDF

Physiological Responses of Bupleurum latissimum Nakai, Endangered Plants to Changes in Light Environment (광환경조절에 따른 멸종위기식물 섬시호의 생리적 반응)

  • Lee, Kyeong-Cheol;Wang, Myeong-Hyeon;Song, Jae Mo
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.154-161
    • /
    • 2013
  • This study was conducted to investigate the physiological responses of Bupleurum latissimum, endangered plants by light condition. We investigated photosynthetic parameters, chlorophyll contents and chlorophyll fluorescence under different shading treatments (Shaded 50%, 70%, 90% and non-treated). Results showed that net apparent quantum yield (AQY) and chlorophyll contents were significantly increased with elevating shading level. However, light compensation point (LCP) and dark respiration ($R_d$) were shown the opposite trend. Especially, non-treated exhibited photoinhibition such as reduction of chlorophyll contents and maximum photosynthesis rate ($Pn_{max}$) also variation trend of stomatal conductance ($g_s$), and transpiration rate (E) were decreased to prevent water loss. Photosynthetic rate ($P_{Nmax}$) and photochemical efficiency (Fv/Fm) of 90% treatment showed a drastic reduction in July. This implies that photosynthetic activity will be sharply decreased with a long period of low light intensity. The 50% treatment showed relatively higher photosynthetic activity than other treated. This result suggested that growth and physiology of B. latissimum adapted to 50% of full sunlight.

Effect of Irrigation Starting Point of Soil on Chlorophyll Fluorescence, Stem Sap Flux Relative Rate and Leaf Temperature of Cucumber in Greenhouse (시설 토양 오이재배에서 관수개시점 처리가 광합성 형광반응, 줄기수액흐름 및 엽온에 미치는 영향)

  • An, Jin Hee;Jeon, Sang Ho;Choi, Eun Yong;Kang, Ho Min;Na, Jong Kuk;Choi, Ki Young
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.46-55
    • /
    • 2021
  • This experiment was conducted to investigate the effect on chlorophyll fluorescence, stem sap flux relative rate (SFRR) and leaf temperature of cucumber when irrigation is controlled using a soil moisture tensiometer. Cucumber (Cucumis sativus L.) 'Chungchun' was irrigated of 10-10-20 kPa and 20-10-10 kPa by soil starting point of irrigation at each growth stage. At the 66 days after treatment (DAT) of 736 to 854 W·m-2 and above 32℃, chlorophyll fluorescence variables (Fo, Fm, Fv/Fm) values showed significantly different between treatments. The Fo and Fv/Fm value in the daytime (10:30 am to 6:00 pm) at 66 DAT was higher in 20-10-10 kPa treatment than in 10-10-20 kPa treatment. The Fv/Fm value decreased when the leaf temperature was increased. There was no difference in leaf growth (length, width and area) at 28 and 66 DAT, but the chlorophyll content (SPAD value) was significantly higher in 20-10-10kPa treatment. SFRR and leaf temperature increased with light intensity and temperature increased. In both treatments, the SFRR started to increase sharply between 8 am and 9 am when the solar radiation is 170 W·m-2 or higher. The soil temperature of the treatments decreased after irrigation, that showed 31.0℃ at 10-10-20kPa and 28.5℃ at 20-10-10kPa on July 5 (820W·m-2 at 1 pm). However, there was no difference in SFRR, leaf temperature, temperature difference (leaf temperature - air temperature) and VPD between treatments. SFRR was significantly positive correlate with the leaf temperature (p < 0.01, r = 0.770). The SFRR and leaf temperature showed positive significant correlation with solar radiation, temperature, soil temperature, soil moisture content and VPD. There was a negative significant correlation with relative humidity and temperature difference.

The Photoinactivation of Photosystem II in Leaves: A Personal Perspective

  • Chow, Wah-Soon
    • Journal of Photoscience
    • /
    • v.8 no.2
    • /
    • pp.43-53
    • /
    • 2001
  • a, a parameter that describes how effectively photoinactivated PS II units protect their functional neighbours; car, carotenoids; ΔpH, transthylakoid pH difference; D1 protein, psbA gene product in the PS II reaction centre; f, functional fraction of PS II: F$\_$v//F$\_$m/, the ratio of variable to maximum chlorophyll a fluorescence; k$\_$d/, rate coefficient for degradation of D1 protein; k$\_$i/ and k$\_$r/, rate coefficient for photoinactivation and repair of PS II, respectively; NADP+, oxidized nicontinamide adenine dinucleotide phosphate; P680, the primary electron donor in the PSII reaction centre; Ph, pheophytin; PS, photosystem; Q$\_$A/, first quinone acceptor of an electron in PS II; R$\_$s/, the gross rate of D1 protein synthesis.

  • PDF

Over-expression of Cu/ZnSOD Increases Cadmium Tolerance in Arabidopsis thaliana

  • Cho, Un-Haing
    • Journal of Ecology and Environment
    • /
    • v.30 no.3
    • /
    • pp.257-264
    • /
    • 2007
  • Over-expression of a copper/zinc superoxide dismutase (Cu/ZnSOD) resulted in substantially increased tolerance to cadmium exposure in Arabidopsis thaliana. Lower lipid peroxidation and $H_2O_2$ accumulation and the higher activities of $H_2O_2$ scavenging enzymes, including catalase (CAT) and ascorbate peroxidase (APX) in transformants (CuZnSOD-tr) compared to untransformed controls (wt) indicated that oxidative stress was the key factor in cadmium tolerance. Although progressive reductions in the dark-adapted photochemical efficiency (Fv/Fm) and quantum efficiency yield were observed with increasing cadmium levels, the chlorophyll fluorescence parameters were less marked in CuZnSOD-tr than in wi. These observations indicate that oxidative stress in the photosynthetic apparatus is a principal cause of Cd-induced phytotoxicity, and that Cu/ZnSOD plays a critical role in protection against Cd-induced oxidative stress.

Effect of Moisture and Nutrient of Soil on Reproductive Phenology and Physiological Response of Epilobium hirsutum L., an Endangered Plant (토양의 수분과 유기물이 멸종위기식물 큰바늘꽃(Epilobium hirsutum L.)의 번식계절 및 생리 반응에 미치는 영향)

  • Lee, EungPill;Lee, SooIn;Han, YoungSub;Lee, SeungYeon;You, YoungHan;Cho, YiYun
    • Journal of Wetlands Research
    • /
    • v.20 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • Reproductive phenology and physiological responses of Epilobium hirsutum L. to moisture content and nutrient content of soil were analysed in order to obtain basic data for effective conservation and restoration. Epilobium hirsutum L. is a perennial plant. But Epilobium hirsutum L. grew reproductively in all moisture and nutrient gradients. Flower bud, flowers and peduncle were respectively ripened in earlier under highest moisture condition and highest nutrient condition. And, number of flowers and peduncle were more quickly increased under highest moisture condition and highest nutrient condition. Chlorophyll content was high under highest moisture condition and higher middle moisture condition. However, we found no significant difference of chlorophyll content regard to nutrient gradients. There was no difference in minimum chlorophyll fluorescence among all moisture and nutrient gradients. The photochemical efficiency values of PS II were 0.75 in all moisture gradients, and it was 0.78 in highest nutrient gradient. The chlorophyll content of Epilobium hirsutum L. increased as the moisture content increased, and the Fv/Fm value increased as the organic matter increased. Our results showed that high moisture and nutrient content of soil advance their breeding season and promote reproductive growth. It might be important basic informations for the maintenance of population and the management of habitat of Epilobium hirsutum L. an endangered plant species.

Effect on Phytoplankton by Hydraulic-Gun-Aerators and Selective Withdrawal in Hoengseung Reservoir (횡성호 식물플랑크톤에 대한 간헐식 폭기의 영향과 선택취수)

  • Choi, Il-Hwan;Kim, Hak-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.1
    • /
    • pp.15-26
    • /
    • 2007
  • Surface water is the main drinking water source in Korea. Algal bloom caused by phytoplankton in reservoir is common event in every summer season. To prevent or control the algal blooms, artificial circulation system has been adopted in many reservoirs, including Hoengseung reservoir. Total 7 hydraulic-gun-aerators were installed around the intake tower in Hoengseung reservoir since 2000. This study is to elucidate the effects of hydraulic-gun-aerators on phytoplankton bloom, pH, DO, temperature and evaluate the selective withdrawal and vertical distribution of phytoplankton by means of submersible fluorescence probe, which features high correlation with a standard ISO method (r=0.90, P<0.0001) for chlorophyll-a quantification.