• Title/Summary/Keyword: Chlorine ion

Search Result 160, Processing Time 0.027 seconds

A study for corrosion products of Ancient iron objects (고대 철기유물의 부식 생성물에 관한 연구)

  • Kand, Dai-Ill;Takayasu. A.Koezuka;Tosiya Matsui
    • 보존과학연구
    • /
    • s.16
    • /
    • pp.59-111
    • /
    • 1995
  • Chemical composion and crystal form of Corrosion products found on archaeological iron objects were analyzed using X-ray fluorescence analysis, micro-X-ray powder diffraction analysis and ion chromatographic technique. The nature and behavior of the corrosion products were studied in order to aid in the conservation and restoration of burial iron objects. Twenty-two samples analyzed in this study were collected from iron object found in Korea and Japan. The corrosion products of iron objects from burial mounds contain $\alpha$-FeOOH, $\beta$-FeOOH, $\gamma$-FeOOH, $Fe_3O_4$and amorphous iron hydroxides. The content of $\alpha$-HeOOH is the greatest. Because, Ageing for long period should change the amorphous iron hydroxides is considerably less than that in usual atmospheric corrosion products. The concentration of chlorine and sulfine is remarkably variable ($Cl^-$ : 100- 30,000ppm, $SO_4^-2$ : 20-10,000ppm),but the reasons are unclear. The presence of generally high concentrations of chlorine and sulfine the corrosion products of iron objects seem to be influenced by the marine climatic condition. The presence of high chlorine and sulfine concentrations in the corrosion products of iron objects seem to be influenced by the marine burial environments.

  • PDF

Effects of TDS on formation of THMs in drinking water treatment (정수처리에서 TDS가 THMs 생성에 미치는 영향)

  • Lee, Seulki;Kwak, Yeonwoo;Hong, Seongho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.3
    • /
    • pp.225-234
    • /
    • 2019
  • This study is focused on effects of factors that affect the formation of THMs during chlorination in drinking water treatment. During the chlorination, chlorine consumption is increased by increasing the initial chlorine dose, the pH and the total dissolved solid (TDS) concentration. Also THMs formation is increased up to $58.82{\mu}g/L$ and $55.54{\mu}g/L$ by increasing initial chlorine concentration and increasing pH. However, concentration of chloroform is decreased by increasing TDS concentration. This is caused the cation($Na^+$) of the total dissolved solids preferentially reacts with the functional groups of the organic material which influence the trihalomethane formation. But total trihalomethane formation is increased up to $127.46{\mu}g/L$ by $Br^-$ contained in the total dissolved solids. DOC reduction was not influenced by any of the factors.

FT-IR Study of Dopant-wool Interactions During PPy Deposition

  • Varesano Alessio;Aluigi Annalisa;Tonin Claudio;Ferrero Franco
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.105-111
    • /
    • 2006
  • Coating the fibre surface by in situ oxidative chemical polymerisation of polypyrrole (using $FeCl_3$ as oxidant) is a readily industrial applicable way to give electrical properties to wool with good ageing stability [1], although pre-treatments are required to avoid damage of the cuticle surface due to the acidic condition of the process. FT-IR and EDX analysis reveal that organic sulphonates and sulphates, used as dopants, are absorbed by wool, while chlorine ions are preferably embedded on the polypyrrole layer. The resulting electrical conductivity seems mainly due to the presence of chlorine as counter-ion of polypyrrole; nevertheless, the presence of arylsulphonate in the polymerisation bath increases the electrical conductivity of the coating layer.

Adsorption Characteristics of Al (III), Ni (II), Sm (III) Ions on Resin with Styrene Hazardous Material in Reinforcement Water Fire Extinguishing Agent

  • Kim, Joon-Tae
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.151-157
    • /
    • 2013
  • The ion exchange resins were synthesized from 1-aza-18-crown-6 macrocyclic ligand attached to styrene (2th petroleum in 4th class hazardous material) divinylbenzene (DVB) copolymer with crosslinks of 1%, 6%, and 15% by substitution reaction. These synthetic resins were confirmed by chlorine content, elementary analysis, surface area, and IR-spectrum. The object of this study was to seperate the metal ion absorbed in reinforcement water fire extinguishing agent. As the results of the effects of pH, equilibrium arrival time, and crosslink of synthetic resin on metal ion adsorption for resin adsorbent, the metal ions were showed high adsorption at pH 3 or over and adsorption equilibrium of metal ions was about 2 hours. In addition, adsorption selectivity for the resin in water was the order of Al (III) > Ni (II) > Sm (III) ions, adsorbability of the metal ions was in the crosslinks order of 1%, 6%, and 15%.

Adsorption of Metal Ions on Cryptand Synthetic Resin (Cryptand 합성수지에 위한 금속 이온들의 흡착)

  • Lee Chi-Young;Kim Joon-Tae
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.4 s.58
    • /
    • pp.38-44
    • /
    • 2005
  • Cryptand resins were synthesized with 1-aza-15-crown-5 macrocyclic ligand attached to styrene divinylbenzene (DVB) copolymer with crosslink of $1\%,\;2\%,\;5\%\;and\;10\%$ by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, and IR-spectrum. The effects of pH, time, dielectric constant of solvent and crosslink on adsorption of uranium$(UO_2^{2+})$ ion were investigated. The uranium ion was showed fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in increasing order uranium$(UO_2^{2+})$ > zinc$(Zn^{2+})$ > samarium$(Sm^{3+})$ ion. The adsorption was in order of $1\%>2\%>5\%>10\%$ crosslink resin and adsorption of resin decreased in proportion to order of dielectric constant of solvents.

Adsorption Characteristic of Mg(II), Al(III), Pb(II) Metal Ions on Cryptand Ion Exchange Resin from Water Fire Extinguishing Agent (물 소화약제로부터 Cryptand 이온교환수지의 Mg(II), Al(III) 및 Pb(II) 흡착특성)

  • Kim, Joon-Tae;Kim, Kwan-Chun
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • Resins were synthesized with 1-aza-15-crown-5 macrocyclic ligand attached to styrene(dangerous matter) divinylbenzene(DVB) copolymer with crosslink of 1, 2, 6 and 15% by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, and IR-spectrum. The effects of pH, time and crosslink on adsorption of metal ion from water fire extinguishing agent by the synthetic resin adsorbent were investigated. The metal ion was showed fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in water was in increasing order of $Mg^{2+}>Al^{3+}>Pb^{2+}$. The adsorption was in the order of 1, 2, 6, and 15% crosslink resin.

Adsorption and Separation of U (VI), Co (II), and Dy (III) Metal Ions on Crown Synthetic Resin

  • Kim, Joon-Tae
    • Journal of Integrative Natural Science
    • /
    • v.10 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • Synthetic resins were combined 1-aza-12-crown-4 macrocyclic ligand with styrene divinylbenzene copolymer having 1%, 2%, 8%, and 16% crosslink by a substitution reaction. These synthetic resins were confirmed by chlorine content, elementary analysis, SEM, surface area, and IR-spectrum. As the results of the effects of pH, crosslink of synthetic resin, and dielectric constant of a solvent on metal ion adsorption for resin adsorbent, the metal ions showed high adsorption at pH 3 or over. Adsorption selectivity for the resin in ethanol solvent was the order of uranium ($UO_2{^{2+}}$) > cobalt ($Co^{2+}$) > dysprosium ($Dy^{3+}$) ion, adsorbability of the metal ion was the crosslink in order of 1%, 2%, 8%, and 16% and it was increased with the lower dielectric constant. In addition, theses metal ions could be separated in the column with 1% crosslink resin by using nitric acid (pH 2.0) as an eluent.

Electrochemical Properties of Ti/IrO2/SnO2-Sb-Ni Electrode for Water Treatment (수처리용 Ti/IrO2/SnO2-Sb-Ni 전극의 전기화학적 특성평가)

  • Yang, So Young
    • Journal of Environmental Science International
    • /
    • v.29 no.10
    • /
    • pp.943-949
    • /
    • 2020
  • In this work, we prepared a heterojunction anode with a surface layer of SnO2-Sb-Ni (SSN) on a Ti/IrO2 electrode by thermal decomposition to improve the electrochemical activity of the Ti/IrO2 electrode. The Ti/IrO2-SSN electrode showed significantly improved electrochemical activity compared with Ti/IrO2. For the 0.1 M NaCl and 0.1 M Na2SO4 electrolytes, the onset potential of the Ti/IrO2-SSN electrode shifted in the positive direction by 0.1 VSCE and 0.4 VSCE, respectively. In 2.0-2.5 V voltages, the concentration in Ti/IrO2-SSN was 2.59-214.6 mg/L Cl2, and Ti/IrO2 was 0.55-49.21 mg/L Cl2. Moreover, the generation of the reactive chlorine species and degradation of Eosin-Y increased by 3.79-7.60 times and 1.06-2.15 times compared with that of Ti/IrO2. Among these voltages, the generation of the reactive chlorine species and degradation of Eosin-Y were the most improved at 2.25 V. Accordingly, in the Ti/IrO2-SSN electrode, it can be assumed that the competitive reaction between chlorine ion oxidation and water oxidation is minimized at an applied voltage of 2.25V.

An Experimental Study on the Ion Reaction and the Electrochemical Rebar-Corrosion in Aqueous Solution Mixed with Sulfate and Chloride Ion-Reactive Material (황산, 염소이온 반응 소재 혼입 수용액에서의 이온반응성 및 전기화학적 철근 부식에 관한 실험적 연구)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Kang, Tae-Won;Lim, Chang-Gil;Kim, Hong-Tae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2019
  • In this study, amine derivatives and ion exchange resins were selected to actively control penetration ions ($SO{_4}^{2-}$, $Cl^-$) as the element technology of repair materials for concrete structures in drainage environments. Ions ($SO{_4}^{2-}$, $Cl^-$) adsorption performance and corrosion resistance of calcium hydroxide solution with amine derivative and ion exchange resin were confirmed by ion chromatography and potentiostat analysis. As a result of the experiment, it was confirmed that the amine derivative is excellent in the adsorption of chlorine ion and the ion exchange resin is excellent in the adsorption of sulfate ion. It has been confirmed that corrosion resistance can be increased by proper combination of two materials in the calcium hydroxide solution containing sulfate ion and chloride ion simulating sewage environment.

Studies on Manufacture of Mineral Water with Wood Charcoals (목질탄화물을 이용한 미네랄수 제조에 관한 연구)

  • Shin, Soo-Jeong;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.460-466
    • /
    • 2014
  • To evaluate wood charcoal as raw material for mineral water production, dissolution of inorganic ions from charcoal to water, pH and adsorption ability of chlorine in water were investigated as main variables. More potassium ion was dissolved in water as higher temperature manufactured charcoal but other ions showed no difference with different charcoal making temperatures. Highest dissolved cation was potassium followed by calcium and sodium. Among wood species, charcoal from Quercus variabilis and Platanus occidentalis showed significantly higher potassium content in water than that of larch, red pine and white pine. Other cations had similar pattern to the potassium but their difference was not apparent as much as potassium. pH value of water treated with charcoal was higher for wood charcoals from Platanus occidentalis (pH 8.5) and Quercus variabilis (pH 8.4) which contained higher inorganic cations. In chlorine removal in water by charcoal, all wood charcoals showed greater chlorine removal than that of the control, but softwood charcoals resulted in higher removal than those of hardwoods. There was no significant difference in the dissolution of cations and pHs between particle charcoal and whole charcoal. With easy of control, whole charcoal is better for mineral water making raw material than particle charcoal does.