• Title/Summary/Keyword: Chlorinated Hydrocarbons

Search Result 63, Processing Time 0.026 seconds

The preliminary batch study for evaluating biobarrier application on sequential degradation of TCE products

  • 이재선;이시진;장순웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.454-457
    • /
    • 2003
  • A new approach for groundwater treatment combines a permeable Fe(0) barrier to breakdown higher chlorinated solvents like PCE and TCE with a downgradient aerobic biological treatment system to biotransform less chlorinated solvents, such as DCE and vinyl chloride (VC). The expected bacterial performance downgradient of an Fe(0) barrier was evaluated through laboratory batch experiments with a toluene-degrading mixed culture that cometabolically transforms cis-1,2-DCE and VC. The amount of cis-1,2-DCE (initially at 2,000 ppb) and VC (initially at 2,000 ppb) transformed was controlled by the initial toluene (20,000 ppb) concentration. VC was removed much more effectively than Cis-1,2-DCE, and a higher toluene concentration in comparison to the co-substrate concentrations was needed for complete co-substrate removal. Overall, the coupling of an Fe(0) barrier and subsequent biodegradation appears feasible for remediation of complex mixtures of chlorinated solvents and petroleum hydrocarbons in groundwater

  • PDF

Separation of Aqueous Chlorinated Hydrocarbons by Pervaporation (투과증발법을 이용한 염소계 화합물 수용액의 분리)

  • 이영무;유승민;오부근
    • Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.53-57
    • /
    • 1996
  • Polysulfone ultrafiltration membrane was coated with polyisobutylene(PIB) as a top layer to separate chlorinated hydrocarbons. The solubility parameter differences between PIB, water and perchloroethylene(PCE) or trichloroethylene(TCE) show that the solubility parameter difference between PIB and TCE or PCE is similar while that between PIB and water is far less, indicating that PIB is selective to chlorinated hydrocarbons. The pervaporation separation of TCE and PCE shows that TCE is concentrated more than four times, by PIB composite membrane, while PCE is concentrated more than thirteen times. This result shows that PIB composite membrane in this study seems to be an appropriate selective layer for the separation of TCE and PCE from aqueous organic solutions.

  • PDF

Development of Microbial Augmentation for the Treatment of Recalcitrant Industrial Wastewater Containing Chlorinated Organic Compounds (유기염소계 난분해성 산업폐수의 처리를 위한 미생물제제의 개발)

  • Lee, Hyun Don;Im, Seong Won;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.887-894
    • /
    • 2014
  • The screening of the microorganisms degrading chlorinated organic compounds such as PCP (pentachlorophenol) and TCE (trichloroethylene) was conducted with soil and industrial wastewater contaminated with various chlorinated organic compounds. Isolates (GP5, GP19) capable of degrading PCP and isolates (GA6, GA15) capable of degrading TCE were identified as Acetobactor sp., Pseudomonas sp., Arthrobacer sp., Xanthomonas sp. and named Acetobacter sp. GP5, Pseudomonas sp. GP19, Arthrobacer sp. GA6 and Xanthomoas sp. GA15, respectively. The microbial augmentation, OC17 formulated with the mixture of bacteria including isolates (4 strains) degrading chlorinated organic compounds and isolates (Acinetobacter sp. KN11, Neisseria sp. GN13) degrading aromatic hydrocarbons. Characteristics of microbial augmentation OC-17 showed cell mass of $2.8{\times}10^9CFU/g$, bulk density of $0.299g/cm^3$ and water content of 26.8%. In the experiment with an artificial wastewater containing PCP (500 mg/l), degradation efficiency of the microbial augmentation OC17 was 87% during incubation of 65 hours. The degradation efficiency of TCE (300 uM) by microbial augmentation OC17 was 90% during incubation of 50 hours. In a continuous culture experiment, analysis of the biodegradation of organic compounds by microbial augmentation OC17 in industry wastewater containing chlorinated hydrocarbons showed that the removal rate of COD was 91% during incubation of 10 days. These results indicate that it is possible to apply the microbial augmentation OC17 to industrial wastewaters containing chlorinated organic compounds.

Assessment of Natural Attenuation Processes in the Groundwater Contaminated with Trichloroethylene (TCE) Using Multi-Species Reactive Transport Modeling (다성분 반응 이동 모델링을 이용한 트리클로로에틸렌(TCE)으로 오염된 지하수에서의 자연저감 평가)

  • Jeen, Sung-Wook;Jun, Seong-Chun;Kim, Rak-Hyeon;Hwang, Hyoun-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.101-113
    • /
    • 2016
  • To properly manage and remediate groundwater contaminated with chlorinated hydrocarbons such as trichloroethylene (TCE), it is necessary to assess natural attenuation processes of contaminants in the aquifer along with investigation of contamination history and aquifer characterization. This study evaluated natural attenuation processes of TCE at an industrial site in Korea by delineating hydrogeochemical characteristics along the flow path of contaminated groundwater, by calculating reaction rate constants for TCE and its degradation products, and by using geochemical and reactive transport modeling. The monitoring data showed that TCE tended to be transformed to cis-1,2-dichloroethene (cis-1,2-DCE) and further to vinyl chloride (VC) via microbial reductive dechlorination, although the degree was not too significant. According to our modeling results, the temporal and spatial distribution of the TCE plume suggested the dominant role of biodegradation in attenuation processes. This study can provide a useful method for assessing natural attenuation processes in the aquifer contaminated with chlorinated hydrocarbons and can be applied to other sites with similar hydrological, microbiological, and geochemical settings.

Studies on Telomerization (I) Telomerization of Vinyl Acetate with Chlorinated Hydrocarbons (Telomerization 에 關한 硏究 (I) Vinyl Acetate 와 Chlorinated Hydrocarbons 과의 Telomerization 에 關하여)

  • Shim, Jyong-Sup;Hong, Suck-Joo
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.1
    • /
    • pp.88-93
    • /
    • 1962
  • The telomerization of vinyl acetate with carbon tetrachloride, chloroform and monochlorobenzene were investigated with respect to the synthesis of those telomers, properties and molecular weights of the formed telomers, and reaction mechanisms. Vinyl acetate reacted with carbon tetrachloride and chloroform to form telomers at 70-90$^{\circ}C$ and 60-70$^{\circ}C$, respectively and it formed polymer with monochlorobenzene. As a chain transfer agent, carbon tetrachloride was more effective than chloroform. In the telomerization of vinyl acetate and carbon tetrachloride: 1) The average molecular weight of the telomer decreased as the mole ratio of carbon tetrachloride to vinyl acetate increased. The optimum conditions for the highest yield of the telomer were as follows: Mole ratio of carbon tetrachloride to vinyl acetate : 2.5 Reaction time : 20 hours. 2) As the reaction proceeded, the refractive index and average molecular weight of the telomer increased rapidly in the first 10 hours but the increase was slow through the next 10 hours, so that, the average recurring number(n) of taxogen in the final product reached an almost definite value, i.e., 3. The telomer formed in the telomerization of vinyl acetate with carbon tetrachloride and chloroform turned to brown color in the air due to decomposition or polymerization. The suggested telomerization mechanism was supported by the hexachloroethane detected in the course of reaction.

  • PDF

Isolation and characterization of bacteria degrading chlorinated aromatic hydrocarbons (염화 방향족 탄화수소 분해세균의 분리 및 특성)

  • 김종우;김치경;김영창;염재홍;이재구
    • Korean Journal of Microbiology
    • /
    • v.25 no.2
    • /
    • pp.122-128
    • /
    • 1987
  • Several bacterial isolates capable of degrading 4-chlorobiphenyl or 2,4,5-trichlorophenoxyacetic acid were isolated from industrial wastes by the agar plate method and studied for their biodegradabilities of the hydrocarbons and some biochemical characteristics. The isolates DJ-12, DJ-26 and TP-1 were identified as Pseudomonas spp. and they could not degrade 2,4-dichlorophenoxyacetic acid. The absorption spectra for 4-chlorobiphenyl and 2,4,5-trichlorophenoxyacetic acid showed the peaks at 253 and 292 nm, respectively. Biodegradability of the isolates was determined by decrease of the absorbance for the test hydrocarbons with a UV-scanning spectrophotometer. The plasmids of the isolates were studied to examine whether or not the hydrocarbon-degrading genes exist in the plasmids. Antibiotics resistance was also examined to search out a proper marker for the isolates in further experiments, such as curing test and genetic recombination.

  • PDF

The Microcosm study for evaluating biobarrier application on sequential degradation of TCE products by Gasoline-Degradaing Mixed Culture

  • Lee, Jae-Sun;Lee, Si-Jin;Lee, Young-Kee;Chang, Soon-Woong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.440-444
    • /
    • 2003
  • A new approach for ground water treatment combines a permeable Fe(0) barrier to breakdown higher chlorinated solvents like PCE and TCE with a down gradient aerobic biological treatment system to biotransform less chlorinated solvents, such as DCE and vinyl chloride (VC). The expected bacterial performance down gradient of an Fe(0) barrier was evaluated through laboratory batch experiments with a toluene-degrading mixed culture that cometabolically transforms cis-1,2-DCE and VC. The amount of cis-1,2-DCE (initially at 2,000 ppb) and VC (initially at 2,000 ppb) transformed was controlled by the initial toluene(20,000 ppb) concentration. VC was removed much more effectively than Cis-1,2-DCE, and a higher toluene concentration in comparison to the co-substrate concentrations was needed for complete co-substrate removal. Overall, the coupling of an Fe(0) barrier and subsequent biodegradation appears feasible for remediation of complex mixtures of chlorinated solvents and petroleum hydrocarbons in groundwater.

  • PDF

A Numerical Simulation of Hazardous Waste Destruction in a Dump Incinerator (덤프 소각기에서 유해폐기물 분해에 대한 수치해석)

  • 전영남;정오진;채종성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.665-674
    • /
    • 2000
  • A major source of the hazardous waste generated is from chemical industries producing plastics, herbicides, pesticides and chlorinated solvents. All of these processes produce a class if hazardous waste termed the chlorinated hydrocarbons(CHCs), either directly or from undesirable side reactions. In this study, we investigated the destruction characteristics of hazardous waste through incineration. A nonequilibrium combustion model was used to describe the effect of the chemical kinetics due to the flame inhibition characteristics of $CCl_4$ which was used as the surrogate of hazardous waste. A parametric screening studies was made in a dump incinerator proposed in this study. The dump incinerator showed high $CCl_4$ DRE(Destruction and Removal Efficiency) as 5 nines. $CCl_4$/CH$_4$ ratio appeared to be most important in the destruction of $CCl_4$ through incineration.

  • PDF