• 제목/요약/키워드: Chloride resistance performance

검색결과 185건 처리시간 0.028초

Mechanical behavior and chloride resistance of cementitious composites with PE and steel fiber

  • Liao, Qiao;Guo, Zhen-wen;Duan, Xin-zhi;Yu, Jiang-tao;Liu, Ke-ke;Dong, Fang-yuan
    • Advances in concrete construction
    • /
    • 제12권6호
    • /
    • pp.451-459
    • /
    • 2021
  • The mechanical behaviors and chloride resistance performance of fiber reinforced cementitious composites (FRCC) with hybrid polyethylene (PE) and steel fiber (in total 2% by volume) were investigated. Based on micro-mechanics and fracture mechanics, the reason why the tensile strain capacity of FRCC changed obviously was obtained. Besides, the effects of the total surface area of fiber in FRCC on compressive strength and chloride content were clarified. It is found that the improvement of the tensile strain capacity of FRCC with hybrid fiber is attributed to the growth of strain-hardening performance index (the ratio of complementary energy to crack tip toughness). As the total surface area of fiber related with the interfacial transition zone (ITZ) between fiber and matrix increases, compressive strength decreases obviously. Since the total surface area of fiber is small, the chloride resistance performance of FRCC with hybrid PE and steel fiber is better than that of FRCC containing only PE fiber.

콘크리트의 표면성능개선이 염소이온투과저항성에 미치는 영향에 관한 실험적 연구 (An experimental study on surface performance improvement of concrete influencing on resistance to chloride)

  • 김재성;강석표;홍성윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.782-785
    • /
    • 2004
  • Salt attack is one of the serious deterioration factor with respect to the durability of concrete structure. Especially, in case of exposed rebar concrete structure in marine environment, corrosion of rebar is accelerated by penetration of $Cl^-$ from exterior. Through this path, volume of corroded rebar is increased about two and half times due to increased inner pressure originated from rust. As a consequence, the overall deterioration of concrete structure, namely, cracks, reduction of adhesive strength and pop-out is followed. In this paper, the effect of structure treatment of concrete on chloride resistance has been investigated. At the same time, the relationship among several characteristics, such as resistance to chloride, water absorption coefficient and surface hardness of concrete has been investigated. It is believed that surface performance improvement by the application of penetrative hardening agent influences on positively water absorption coefficient, surface hardness of concrete and resistance to chloride ion penetration.

  • PDF

해안인접지역 기초 구조물콘크리트의 내염해 성능 평가 -건축구조기준과의 성능비교- (An Evaluation on the Chloride Resistance of Concrete Footing at Coastal Area -Comparision of Performance in Korea Building Code(KBC)-)

  • 박용규;윤기원;김현우;김용로;송영찬
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 추계 학술논문 발표대회
    • /
    • pp.148-149
    • /
    • 2016
  • In this paper, the increase in chloride resistance of footing concrete at coastal area was evaluated by replacement of Mineral Admixture. In KBC 2009, the footing concrete's minimum specific concrete strength at coastal area is determined to 35MPa. However, this is criteria only based on the strength aspect. Thus, it is not considered to increase the chloride resistance by replacement of Mineral Admixture. According to the test results of chloride ions penetration resistance, 35MPa class concrete with OPC 100% shown inaccessible state. Low-strength (24~30MPa class) concretes with Mineral Admixture, however, presented better performances. In addition, chloride diffusion coefficient tests showed identical appearance. Therefore, the current KBC's chloride resistance criteria based on only concrete strength has to review for the reason it can cause many problems (ex. cost increases by growing concrete strength and the environmental issues by a lot of cement use).

  • PDF

석탄가스화 용융 슬래그 치환 콘크리트의 염화이온 침투 저항성 검토 (Evaluation of Chloride Ion Penetration Resistance of Coal Gasification Slag Replaced Concrete)

  • 조현서;김민혁;이건철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.166-167
    • /
    • 2019
  • In this study, to test the performance of concrete used as a concrete admixture as a recycling method of CGS, gypsum was mixed and the chloride ion penetration resistance test of CGS and BFS substituted concrete was conducted. As a result, it was found that without gypsum type test specimen, the CGS sustituted test specimens had lower chloride ion penetration resistance than the BFS substituted specimens. When gypsum was added, it was confirmed that the chloride ion penetration resistance was poor regardless of the type of admixture. In addition, it was confirmed that both admixtures were less resistant to chloride ion penetration than OPC, regardless of the presence of gypsum. However, considering the uneven quality variation of coal, which greatly affects the quality of CGS, further research is needed.

  • PDF

메타카올린을 사용한 고성능 경량 콘크리트의 염소이온 확산 특성 (The Chloride Ion Diffusion Characteristics of High Performance Lightweight Concrete Using Metakaolin)

  • 이창수;김영욱;남창식
    • 한국재난정보학회 논문집
    • /
    • 제7권1호
    • /
    • pp.21-31
    • /
    • 2011
  • 본 연구에서는 실리카흄을 대체하고 경량 콘크리트의 성능 향상을 위하여 메타카올린을 사용한 고성능 경량 콘크리트를 제조하여 기초물성 및 염소이온 확산 특성에 대하여 분석하였다. 그 결과, 메타카올린을 사용한 경량 콘크리트는 압축강도와 염소이온 침투 저항성이 실리카흄을 사용한 경량 콘크리트보다 낮게 나왔지만, 실리카흄 대비 압축강도는 약 88~95%의 성능을 보였고, 염소이온 침투 저항성은 약 80~90%의 성능을 보여 만족할 만한 결과가 나왔다. 본 연구에서의 결과를 바탕으로 메타카올린의 적정 치환율은 10~15%가 적절하다고 사료된다. 메타카올린은 실리카흄과 유사한 특성을 갖고 있고, 비슷한 성능을 나타내기 때문에 대체재로의 가능성이 있다고 판단된다.

Effects of subsequent curing on chloride resistance and microstructure of steam-cured mortar

  • Hu, Yuquan;Hu, Shaowei;Yang, Bokai;Wang, Siyao
    • Advances in concrete construction
    • /
    • 제9권5호
    • /
    • pp.449-457
    • /
    • 2020
  • The influence of subsequent curing on the performance of fly ash contained mortar under steam curing was studied. Mortar samples incorporated with different content (0%, 20%, 50% and 70%) of Class F fly ash under five typical subsequent curing conditions, including standard curing (ZS), water curing(ZW) under 25℃, oven-dry curing (ZD) under 60℃, frozen curing (ZF) under -10℃, and nature curing (ZN) exposed to outdoor environment were implemented. The unsteady chloride diffusion coefficient was measured by rapid chloride migration test (RCM) to analyze the influence of subsequent curing condition on the resistance to chloride penetration of fly ash contained mortar under steam curing. The compressive strength was measured to analyze the mechanical properties. Furthermore, the open porosity, mercury intrusion porosimetry (MIP), x-ray diffraction (XRD) and thermogravimetric analysis (TGA) were examined to investigate the pore characteristics and phase composition of mortar. The results indicate that the resistance to chloride ingress and compressive strength of steam-cured mortar decline with the increase of fly ash incorporated, regardless of the subsequent curing condition. Compared to ZS, ZD and ZF lead to poor resistance to chloride penetration, while ZW and ZN show better performance. Interestingly, under different fly ash contents, the declining order of compressive strength remains ZS>ZW>ZN>ZD>ZF. When the fly ash content is blow 50%, the open porosity grows with increase of fly ash, regardless of the curing conditions are diverse. However, if the replacement amount of fly ash exceeds a certain high proportion (70%), the value of open porosity tends to decrease. Moreover, the main phase composition of the mortar hydration products is similar under different curing conditions, but the declining order of the C-S-H gels and ettringite content is ZS>ZD>ZF. The addition of fly ash could increase the amount of harmless pores at early age.

복합열화 환경을 받는 콘크리트 시설물을 위한 보수용 폴리머 시멘트 복합체의 내구성능 향상에 관한 연구 (Enhanced Durability Performance of Polymer Modified Cement Composites for Concrete Repair Under Combined Aging Conditions)

  • 원종필;박찬기
    • 한국농공학회논문집
    • /
    • 제47권6호
    • /
    • pp.27-34
    • /
    • 2005
  • The purpose of this study is to improve the durability performance of polymer modified cement composites for repair of concrete under combined aging conditions. The experimental procedure was divided into three parts. First, the replacement level of mineral admixtures in polymer modified cement composites were determined in an experimental study based on a Box Behnken design. Second, the flow value, compressive strength and chloride permeability test of sixteen types of mixtures were conducted. Test results show that the polymer modified cement composites were effected on the improvement of the compressive strength and permeability performance. Third, the effects on the replacement level of silica fume mixture was evaluated by the compressive strength, chloride permeability, chemical resistance and repeated freezing and thawing cycles test. They demonstrated that the polymer modified cement composites using mixture of silica fume, fly ash, and blast furnace slag improved the durability performance.

광물질 혼화재를 혼합한 해양 콘크리트의 해석적 성능 평가 (Analytical Estimation of the Performance of Marine Concrete with Mineral Admixture)

  • 이방연;권성준;강수태
    • 한국건설순환자원학회논문집
    • /
    • 제3권4호
    • /
    • pp.301-306
    • /
    • 2015
  • 이 연구에서는 해양 콘크리트의 균열저항성 및 내구성을 향상시킨 고성능 해양 콘크리트 개발 연구의 일환으로 광물질 혼화재를 혼입한 콘크리트의 강도, 수화발열 특성 및 염해저항성에 대한 해석적 평가를 실시하였다. 고로슬래그와 플라이애시를 광물질 혼화재로 검토하였으며, 고로슬래그 치환율은 70%까지 플라이애시 치환율은 40%까지 검토하였다. 해석검토 결과, 고로슬래그 및 플라이애시 치환은 모두 압축강도를 크게 저하시키는 결과를 보였으며, 수화발열 특성에서는 고로슬래그는 영향이 적은 반면, 플라이애시는 수화발열량 저감에 크게 효과가 있는 것으로 나타났다. 염소이온 침투 특성에서는 고로슬래그는 침투저항성을 증대시키는 반면, 플라이애시는 저하시키는 경향을 보였다. 해석적 평가를 통해 수화열과 염해내구성을 동시에 고려할 경우, 적절한 양의 고로슬래그와 플라이애시를 함께 사용한 3성분계 시멘트 배합 구성이 효과적일 것으로 판단된다.

Corrosion Behavior of Cr-bearing Corrosion Resistant Rebar in Concrete with Chloride Ion Content

  • Tae, Sung Ho
    • Architectural research
    • /
    • 제7권1호
    • /
    • pp.49-54
    • /
    • 2005
  • Conventional studies have focused on the reduction in the water-cement ratio, the use of various admixtures, etc., to ensure the durability of reinforced concrete structures against such deterioration factors as carbonation and chloride attack. However, improvement in the concrete quality alone is not considered sufficient or realistic for meeting the recent demand for a service life of over 100 years. This study intends to improve the durability of reinforced concrete structures by improvement in the reinforcing steel, which has remained untouched due to cost problems, through subtle adjustment of the steel components to keep the cost low. As a fundamental study on the performance of Cr-bearing rebars in steel reinforced concrete structures exposed to corrosive environments, The test specimens were made by installing 8 types of rebars in concretes with a chloride ion content of 0.3, 0.6, 1.2, 2.4 and $24kg/m^3$. Corrosion accelerated curing were then conducted with them. The corrosion resistance of Cr-bearing rebars was examined by measuring crack widths, half-cell potential, corrosion area and weight loss after 155 cycles of corrosion-accelerating curing. The results of the study showed that the corrosion resistance increased as the Cr content increased regardless of the content of chloride ions, and that the Cr-bearing rebars with a Cr content of 5% and 9% showed high corrosion resistance in concretes with a chloride ion content of 1.2 and $2.4kg/m^3$, respectively.

A Study on High Performance Fine-Grained Concrete Containing Rice Husk Ash

  • Le, Ha Thanh;Nguyen, Sang Thanh;Ludwig, Horst-Michael
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권4호
    • /
    • pp.301-307
    • /
    • 2014
  • Rice husk ash (RHA) is classified as a highly reactive pozzolan. It has a very high silica content similar to that of silica fume (SF). Using less-expensive and locally available RHA as a mineral admixture in concrete brings ample benefits to the costs, the technical properties of concrete as well as to the environment. An experimental study of the effect of RHA blending on workability, strength and durability of high performance fine-grained concrete (HPFGC) is presented. The results show that the addition of RHA to HPFGC improved significantly compressive strength, splitting tensile strength and chloride penetration resistance. Interestingly, the ratio of compressive strength to splitting tensile strength of HPFGC was lower than that of ordinary concrete, especially for the concrete made with 20 % RHA. Compressive strength and splitting tensile strength of HPFGC containing RHA was similar and slightly higher, respectively, than for HPFGC containing SF. Chloride penetration resistance of HPFGC containing 10-15 % RHA was comparable with that of HPFGC containing 10 % SF.