Browse > Article
http://dx.doi.org/10.12989/acc.2021.12.6.451

Mechanical behavior and chloride resistance of cementitious composites with PE and steel fiber  

Liao, Qiao (College of Civil Engineering, Tongji University)
Guo, Zhen-wen (Shanghai Municipal Planning and Design Institute Co., Ltd.)
Duan, Xin-zhi (Shanghai Municipal Planning and Design Institute Co., Ltd.)
Yu, Jiang-tao (College of Civil Engineering, Tongji University)
Liu, Ke-ke (Shanghai Municipal Planning and Design Institute Co., Ltd.)
Dong, Fang-yuan (Shanghai Municipal Planning and Design Institute Co., Ltd.)
Publication Information
Advances in concrete construction / v.12, no.6, 2021 , pp. 451-459 More about this Journal
Abstract
The mechanical behaviors and chloride resistance performance of fiber reinforced cementitious composites (FRCC) with hybrid polyethylene (PE) and steel fiber (in total 2% by volume) were investigated. Based on micro-mechanics and fracture mechanics, the reason why the tensile strain capacity of FRCC changed obviously was obtained. Besides, the effects of the total surface area of fiber in FRCC on compressive strength and chloride content were clarified. It is found that the improvement of the tensile strain capacity of FRCC with hybrid fiber is attributed to the growth of strain-hardening performance index (the ratio of complementary energy to crack tip toughness). As the total surface area of fiber related with the interfacial transition zone (ITZ) between fiber and matrix increases, compressive strength decreases obviously. Since the total surface area of fiber is small, the chloride resistance performance of FRCC with hybrid PE and steel fiber is better than that of FRCC containing only PE fiber.
Keywords
chloride resistance performance; fiber reinforced cementitious composites (FRCC); hybrid fiber; mechanical properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Teng, S., Afroughsabet, V. and Ostertag, C.P. (2018), "Flexural behavior and durability properties of high performance hybrid-fiber-reinforced concrete", Constr. Build. Mater., 182, 504-515. https://doi.org/10.1016/j.conbuildmat.2018.06.158.   DOI
2 Subedi, S., Arce, G.A., Hassan, M.M., Barbato, M. and Mohammad, L.N. (2021), "Effect of raw sugarcane bagasse ash as sand replacement on the fiber-bridging properties of Engineered Cementitious Composites", Transport. Res. Record, 2675(11), 1028-1042. https://doi.org/10.1177/03611981211023762.   DOI
3 Prakasam, G., Murthy, A.R., Kumar S.S., Reheman M.S. and Iyer N.R. (2016), "Effect of nanosilica on durability and mechanical properties of high-strength concrete", Mag. Concrete Res., 68(5), 229-236. https://doi.org/10.1680/jmacr.14.00338.   DOI
4 Zhong, L. and Li, V.C. (1997), "Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces", J. Mech. Phys. Solid., 45(5), 763-787. https://doi.org/10.1016/0010-4361(90)90005-H.   DOI
5 Lepech, M.D. and Li, V.C. (2009), "Water permeability of engineered cementitious composites", Cement Concrete Compos., 31(10), 744-753. https://doi.org/10.1016/j.cemconcomp.2009.07.002.   DOI
6 Lee, S.F. and Jacobsen, S. (2011), "Study of interfacial microstructure, fracture energy, compressive energy and debonding load of steel fiber-reinforced mortar", Mater. Struct., 44(8), 1451-1465. https://doi.org/10.1617/s11527-011-9710-4.   DOI
7 Li, H.D. and Xu, S.L. (2016), "Rate dependence of ultra high toughness cementitious composite under direct tension", J. Zhejiang U. Sci. A, 17(6), 417-426. https://doi.org/10.1631/jzus.A1600031.   DOI
8 Li, M. and Li, V.C. (2011), "Cracking and healing of Engineered Cementitious Composites under chloride environment", ACI Mater. J., 108(3), 333-340.
9 Wang, Z.B., Zhang, J., Wang, J.H. and Shi, Z.J. (2015), "Tensile performance of polyvinyl alcohol-steel hybrid fiber reinforced cementitious composite with impact of water to binder ratio", J. Compos. Mater., 49(18), 2169-2186. https://doi.org/10.1177/0021998314542450.   DOI
10 Yu, J.T., Jiang, F.M., Yu, K.Q., Dong, F.Y. and Duan, X.Z. (2019), "Deformability enhancement of fiber-reinforced cementitious composite by incorporating recycled powder," J. Reinf. Plast. Compos., 39, 119-131. https://doi.org/10.1177/0731684419877251.   DOI
11 Common Portland Cement in China (GB175-2007), China Building Materials Federation, Beijing.
12 Algassem, O., Li, Y. and Aoude, H. (2019), "Ability of steel fibers to enhance the shear and flexural behavior of high-strength concrete beams subjected to blast loads", Eng. Struct., 199, 109611. https://doi.org/10.1016/j.engstruct.2019.109611.   DOI
13 Bernard, F. and Kamali-Bernard, S. (2015), "Numerical study of ITZ contribution on mechanical behavior and diffusivity of mortars", Comput. Mater. Sci., 102, 250-257. https://doi.org/10.1016/j.commatsci.2015.02.016.   DOI
14 Ahmed, S.F.U., Maalej, M. and Paramasivam, P. (2007), "Flexural responses of hybrid steel-polyethylene fiber reinforced cement composites containing high volume fly ash", Constr. Build. Mater., 21(5), 1088-1097. https://doi.org/10.1016/j.conbuildmat.2006.01.002.   DOI
15 Algburi, A.H.M., Sheikh, M.N. and Hadi, M.N.S. (2019), "Mechanical properties of steel, glass, and hybrid fiber reinforced reactive powder concrete", Front. Struct. Civil Eng., 13(4), 998-1006. https://doi.org/10.1007/s11709-019-0533-7.   DOI
16 Code for Design of Concrete Structures in China (GB50010-2010), Architecture publishing and Media Co. Ltd, Beijing.
17 Li, V.C., Wang, S.X. and Wu, C. (2001), "Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)", ACI Mater. J., 98(6), 483-492.
18 Deshpande, A.A., Kumar, D. and Ranade, R. (2019), "Influence of high temperatures on the residual mechanical properties of a hybrid fiber-reinforced strain-hardening cementitious composite", Constr. Build. Mater., 208, 283-295. https://doi.org/10.1016/j.conbuildmat.2019.02.129.   DOI
19 Paul, S.C., Van Zijl, G.P.A.G., Babafemi, A.J. and Tan, M.J. (2016), "Chloride ingress in cracked and uncracked SHCC under cyclic wetting-drying exposure", Constr. Build. Mater., 114, 232-240. https://doi.org/10.1016/j.conbuildmat.2016.03.206.   DOI
20 Hanif, A., Parthasarathy, P., Lu, Z.Y., Sun, M. and Li, Z.J. (2017), "Fiber-reinforced cementitious composites incorporating glass cenospheres-Mechanical properties and microstructure", Constr. Build. Mater., 154, 529-538. https://doi.org/10.1016/j.conbuildmat.2017.07.235.   DOI
21 Li, V.C., Wang, Y. and Backer, S. (1990), "Effect of inclining angle, bundling and surface treatment on synthetic fiber pull-out from a cement matrix", Compos., 21, 132-140. https://doi.org/10.1016/0010-4361(90)90005-H.   DOI
22 Ma, Z.M., Zhao, T.J. and Yao, X.C. (2016), "Influence of applied loads on the permeability behavior of ultra high performance concrete with steel fibers", J. Adv. Concrete Tech., 14(12), 770-781. https://doi.org/10.3151/jact.14.770.   DOI
23 Murthy, A.R. and Ganesh, P. (2019), "Effect of steel fibres and nano silica on fracture properties of medium strength concrete", Adv. Concrete Constr., 7(3), 143-150. https://doi.org/10.12989/acc.2019.7.3.143.   DOI
24 Naaman, A.E. and Reinhardt, H.W. (1996), High Performance Fiber Reinforced Cement Composites, First edition, Springer, USA.
25 Noorvand, H., Arce, G.A. and Hassan, M.M. (2021), "Evaluation of the effects of engineered cementitious composites (ECC) plasticity on concrete pavement performance", Int. J. Pave. Eng., 1-13. https://doi.org/10.1080/10298436.2021.1954180.   DOI
26 Prakasam, G., Murthy, A.R. and Reheman, M.S. (2020), "Mechanical, durability and fracture properties of nanomodified FA/GGBS geopolymer mortar", Mag. Concrete Res., 72(4), 207-216. https://doi.org/10.1680/jmacr.18.00059.   DOI
27 Qiu, J.S., Tan, H.S. and Yang, E.H. (2016), "Coupled effects of crack width, slag content, and conditioning alkalinity on autogenous healing of engineered cementitious composites", Cement Concrete Compos., 73, 203-212. https://doi.org/10.1016/j.cemconcomp.2016.07.013.   DOI
28 Rong, Z.D., Ding, J.Y., Cui, Z.J. and Sun, W. (2019), "Mechanical properties and microstructure of ultra-high performance cement-based composite incorporating RHA", Adv. Cement Res., 31(10), 472-480. https://doi.org/10.1680/jadcr.17.00209.   DOI
29 Khlef, F.L., Barbosa, A.R. and Ideker, J.H. (2019), "Tension and cyclic behavior of high-performance fiber-reinforced cementitious composites", J. Mater. Civ. Eng., 31(10), 04019220. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002844.   DOI
30 Khelifa, H., Bezazi, A., Boumediri, H., del Pino, G.G., Reis, P.N.B., Scarpa, F. and Dufresne, A. (2021), "Mechanical characterization of mortar reinforced by date palm mesh fibers: Experimental and statistical analysis", Constr. Build. Mater., 300, 124067. https://doi.org/10.1016/j.conbuildmat.2021.124067.   DOI
31 Li, V.C. and Leung, C.K.Y. (1992), "Steady-state and multiple cracking of short random fiber composites", J. Eng. Mech. ASCE, 118(11), 2246-2264. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:11(2246).   DOI
32 Liu, Y.S., Zhou, X.M., Lv, C.B., Yang, Y.Z. and Liu, T.A. (2018), "Use of silica fume and GGBS to improve frost resistance of ECC with high-volume fly ash", Adv. Civil Eng., 2018, 7987589. https://doi.org/10.1155/2018/7987589.   DOI
33 Murthy, A.R., Iyer, N.R. and Prasad B. (2013), "Evaluation of mechanical properties for high strength and ultrahigh strength concretes", Adv. Concrete Constr., 1(4), 341-358. https://doi.org/10.12989/acc2013.1.4.341.   DOI
34 Wang, Y.C., Liu, F.C., Yu, J.T., Dong, F.Y., Ye, J.H. (2020), "Effect of polyethylene fiber content on physical and mechanical properties of engineered cementitious composites", Constr. Build. Mater., 251, 118917. https://doi.org/10.1016/j.conbuildmat.2020.118917.   DOI
35 Zhao, J.J., Yan, C.W., Liu, S.G., Zhang, J. and Cao, Y.F. (2021), "Effect of expansive agent and curing condition on the properties of low-cost polyvinyl alcohol engineered cementitious composites", Constr. Build. Mater., 268, 121169. https://doi.org/10.1016/j.conbuildmat.2020.121169.   DOI
36 Yu, K.Q., Dai, J.G., Lu, Z.D. and Leung, C.K.Y. (2015), "Mechanical properties of Engineered Cementitious Composites subjected to elevated temperatures", J. Mater. Civil Eng., 27(10), 04014268. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001241.   DOI
37 Awwad, E., Mabsout, M., Hamad, B., Farran, M.T. and Khatib, H. (2012), "Studies on fiber-reinforced concrete using industrial hemp fibers", Constr. Build Mater., 35, 710-717. https://doi.org/10.1016/j.conbuildmat.2012.04.119.   DOI
38 Wang, S.S., Le, T.N.L., Poh, L.H., Feng, H.J. and Zhang, M.H. (2016), "Resistance of high-performance fiber-reinforced cement composites against high-velocity projectile impact", Int. J. Impact Eng., 95, 89-104. https://doi.org/10.1016/j.ijimpeng.2016.04.013.   DOI
39 Ding, Y., Yu, J.T., Yu, K.Q. and Xu, S.L. (2018), "Basic mechanical properties of ultra-high ductility cementitious composites: From 40 MPa to 120 MPa", Compos. Struct., 185, 634-645. https://doi.org/10.1016/j.compstruct.2017.11.034.   DOI
40 Wang, S.S., Le, T.N.L., Poh, L.H., Quek, S.T. and Zhang, M.H. (2017), "Effect of high strain rate on compressive behavior of strain-hardening cement composite in comparison to that of ordinary fiber-reinforced concrete", Constr. Build. Mater., 136, 31-43. https://doi.org/10.1016/j.conbuildmat.2016.12.183.   DOI
41 Wu, H.L., Yu, J., Du, Y.J. and Li, V.C. (2021), "Mechanical performance of MgO-doped Engineered Cementitious Composites (ECC)", Cement Concrete Compos., 115, 103857. https://doi.org/10.1016/j.cemconcomp.2020.103857.   DOI
42 Yang, E.H. and Li, V.C. (2012), "Tailoring engineered cementitious composites for impact resistance", Cement Concrete Res., 42(8), 1066-1071. https://doi.org/10.1016/j.cemconres.2012.04.006.   DOI
43 Yu, J. and Leung, C.K.Y. (2017), "Strength improvement of strain-hardening cementitious composites with ultrahigh-volume fly ash", J. Mater. Civil Eng., 29(9), 05017003. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001987.   DOI
44 Zhang, J., Maalej, M. and Quek, S.T. (2007), "Performance of hybrid-fiber ECC blast/shelter panels subjected to drop weight impact", J. Mater. Civil Eng., 19(10), 855-863. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:10(855).   DOI
45 Yu, K.Q., Wang, Y.C., Yu, J.T. and Xu, S.L. (2017), "A strain-hardening cementitious composites with the tensile capacity up to 8%", Constr. Build. Mater., 137, 410-419. https://doi.org/10.1016/j.conbuildmat.2019.06.067.   DOI
46 Zhang, J., Wang, Q. and Wang, Z.B. (2017), "Properties of polyvinyl alcohol-steel hybrid fiber-reinforced composite with high-strength cement matrix", J. Mater. Civil Eng., 29(7), 04017026. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001868.   DOI
47 Zhang, J.S. and Zhao, Y.H. (2017), "The mechanical properties and microstructure of ultra-high-performance concrete containing various supplementary cementitious materials", J. Sustain. Cement Based Mater., 6, 254-266. https://doi.org/10.1080/21650373.2016.1262798.   DOI
48 Zhu, Y., Yang, Y.Z. and Yao, Y. (2012), "Autogenous self-healing of engineered cementitious composites under freeze-thaw cycles", Constr. Build. Mater., 34, 522-530. https://doi.org/10.1016/j.conbuildmat.2012.03.001.   DOI
49 Prem, P.R., Murthy, A.R. and Bharatkumar, B.H. (2015), "Influence of curing regime and steel fibres on the mechanical properties of UHPC", Mag. Concrete Res., 67(18), 988-1002. https://doi.org/10.1680/macr.14.00333.   DOI
50 Yu, J., Chen, Y.X. and Leung, C.K.Y. (2019), "Mechanical performance of Strain-Hardening Cementitious Composites (SHCC) with hybrid polyvinyl alcohol and steel fibers", Compos. Struct., 226, 111198. https://doi.org/10.1016/j.compstruct.2019.111198.   DOI
51 Sheta, A., Ma, X., Yan, Z.G., ElGawady, M.A., Mills, J.E., Singh, A. and Abd-Elaal, E. (2021). "Structural performance of novel thin-walled composite cold-formed steel/PE-ECC beams", Thin Wall. Struct., 162, 107586. https://doi.org/10.1016/j.tws.2021.107586.   DOI
52 Yu, J.T., Lu, K.K., Xu, Q.F., Li, Z.H. and Ouyang, L.J. (2019), "Feasibility of using seawater to produce ultra-high ductile cementitious composite for construction without steel reinforcement", Struct. Concrete, 20(2), 774-785. https://doi.org/10.1002/suco.201800116.   DOI