• Title/Summary/Keyword: Chlamydomonas

Search Result 103, Processing Time 0.024 seconds

(CA/GT)n Simple Sequence Repeat DNA Polymorphism in Chlamydomonas reinhardtii (녹조류 Chlamydomonas reinhardtii의 (CA/GT)n Simple Sequence Repeat DNA 다형현상)

  • ;;Marvin W. FAWLEY
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.2
    • /
    • pp.113-117
    • /
    • 1997
  • Simple sequence repeats (SSR) are widely dispersed throughout eukaryotic genomes, highly polymorphic, and easily typed using polymerase chain reaction (PCR). The objective of this study was to determine the polymorphism of different Chlamydomonas reinhartdtii strains and to determine the mode of inheritance of the SSR locus in Chlamydomonas. A genomic DNA library of C. reinhardtii was constructed and screened with a radiolabeled $(AC)_{11}$ probe for the selection of (CA/GT)n repeat clone. Selected clone was seqeuenced, and PCR primer set flanking (CA/GT)n sequence was constructed. PCR was used to specifically amplify the SSR locus from multiple isolates of C. reinhardtii. The locus was polymorphic in some of the C. reinhardtii isolates. However, the locus was amplified only 4 of 6 isolates of C. reinhardtii, not in other 2 isolates of C. reinhardtii, suggesting that this locus is not extensively conserved. A simple Mendelian inheritance pattern was found, which showed 2:2 segregation in the tetrads resulting from a cross between C. reinhardtii and C. smithii. Our results suggest that this simple sequence repeat DNA polymorphism will be useful for identity testing, population studies, linkage analysis, and genome mapping in Chlamydomonas.

  • PDF

Anti-corrugation activity of micosporine-like amino acid mixtures from Chlamydomonas sp. (Chlamydomonas sp. 유래 mycosporine-like amino acid 혼합물의 항주름 활성)

  • Suh, Sung-Suk;Seo, Hyo Hyun;Lee, Jeong Hun;Hwang, Jinik;Park, Mirye;Moh, Sang Hyun;Lee, Taek-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5393-5399
    • /
    • 2014
  • To examine the effects of a mycosporine-like amino acids (MAAs) mixture from microalgae, Chlamydomonas sp, on the anti-wrinkle activities, the expression levels of genes that are associated with skin aging, including type I procollagen, elastin and involucrin, were analyzed. Asterina 330+palythine (A+P) and shinorine+palythine (S+P) mixtures were purified from Chlamydomonas sp using the following steps: 80% methanolic extraction, column purification, and HPLC analysis. As a result of the MTT assay, A+P and S+P did not induce cellular cytotoxicity with up to 0.1 mg/mL of both MAAs. In addition, the treatment of UV-exposed fibroblasts with A+P (0.05 mg/mL) and S+P (0.01 mg/mL) increased the levels of the PCOLCE mRNAs by 2.7 and 3.6 fold compared to the control group, respectively, The levels of elastin gene expression were elevated 5.59 and 3.1 fold in the A+P and S+P treated (0.01 mg/mL) cells, respectively. In particular, at a concentration of 0.01 mg /mL, the A+P and S+P expression levels of Involucrin mRNAs were increased 3.5 and 2.5 fold in the UV-exposed cells compared to the control, respectively. In conclusion, the MAAs derived from Chlamydomonas sp can be utilized as functional cosmetic materials with anti-wrinkle effects on the skin.

Effect of Limiting Factors for Hydrogen Production in Sulfur Deprived Chlamydomonas Reinhardtii (황결핍 된 Chlamydomonas Reinhardtii 배양액에서 수소생산을 위한 제한 인자들의 영향)

  • Kim, Jun-Pyo;Sim, Sang-Jun
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.3
    • /
    • pp.286-292
    • /
    • 2006
  • Chlamydomonas reinhardtii is a green algae that can use light energy and water to produce hydrogen under anaerobic condition. This work reports the effect of limiting factors on hydrogen production in sulfur deprived anaerobic C. reinhardtii culture. In order to confirm the relationship between hydrogen production and limiting factors such as residual PSII activity and endogenic substrate degradation, the increase in chlorophyll concentration and the decrease in starch concentration was investigated during sulfur deprivation. The overall hydrogen production increased depending on cell density in range of $0.4{\sim}0.96\;g$ DCW/l. At this time, the increase in chlorophyll concentration during 24 h after sulfur deprivation increased in proportion to hydrogen production, however, the decrease in starch concentration was not proportional to that. Therefore, hydrogen production under sulfur deprivation using green alga was closely associated with the residual PSII activity than the endogenic substrate degradation.

Studies on the Growth of Freshwater Algae by Biocides I. On the Growth of Chlamydomonas reinhardii (Biocide에 의한 담수조류의 생장에 관한 연구 I. Chlamydomonas reinhardii의 생장에 미치는 영향)

  • 이은경
    • Journal of Plant Biology
    • /
    • v.25 no.3
    • /
    • pp.113-121
    • /
    • 1982
  • The effects of 6 biocides on the growth of Chlamydomonas reinhardii in pure culture were studied. For the batch culture assay of biocides, the growth rate in control tubes should be compared with in the test tubes and the effective concentration calculated on the basis of the percent decrease in growth rate at the different toxicant concentration. The concentrations at which 50% decrease in growth rate was observed are $40{\mu}g$/l for butachlor and $350{\mu}g$/l for alachlor in herbicide, $900{\mu}g$/l for phenazine-5-oxide and $3,400{\mu}g$/l for isoprothiolane in fungicide, and $3,330{\mu}g$/l for fenthion and $332,500{\mu}g$/l for trichlorfon in insecticide. The inhibitory effect on the growth of Chlamydomonas reinhardii by the treatment of various biocide concentrations was decreased in order of herbicide>fungicide>insecticide. Chlorophyll and carotenoid content per cell were increased, whereas chlorophyll a/b ratio was hardly affected by biocides. The effects of biocides on pigment content were also decreased in order of herbicide>fungicide>insecticide, which suggested the relationship between the effect of biocides on the pigment content and inhibition of growth rate.

  • PDF

Optimization of Organic Compounds and Hydrogen Production in Dark Fermentation using Chlamydomonas reinhardtii (Chlamydomonas reinhardtii를 이용한 암반응에서의 수소 및 유기물 생산 최적화)

  • 공경택;심상준;박대원;김미선;박태현
    • KSBB Journal
    • /
    • v.18 no.1
    • /
    • pp.51-54
    • /
    • 2003
  • The objective of this study was to optimize culture conditions and to produce hydrogen and organic compounds using microalga Chlamydomonas reinhardtii. First of all, C. reinhardtii UTEX 90 was chosen from the three kinds of strains in terms of their hydrogen and organic compound productivity. The optimum $\textrm{CO}_2$ concentration range of C. reinhardtii UTEX 90 was 1to 3%. We tested two medium, which are popular in this microalga culture; Brostol's medium and TAP medium (8). The cell growth in TAP medium was found to be higher than a Brostol's medium. Optimum culture with 3% of $\textrm{CO}_2$ in TAP medium produced the most hydrogen ($0.5\mu$ mol/ mg DCW), though Bristol's medium produced twice as much total organics.

Biohydrogen production from engineered microalgae Chlamydomonas reinhardtii

  • Kose, Ayse;Oncel, Suphi S.
    • Advances in Energy Research
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • The green microalgae Chlamydomonas reinhardtti is well-known specie in the terms of $H_2$ production by photo fermentation and has been studying for a long time. Although the $H_2$ production yield is promising; there are some bottlenecks to enhance the yield and efficiency to focus on a well-designed, sustainable production and also scaling up for further studies. D1 protein of photosystem II (PSII) plays an important role in photosystem damage repair and related to $H_2$ production. Because Chlamydomonas is the model algae and the genetic basis is well-studied; metabolic engineering tools are intended to use for enhanced production. Mutations are focused on D1 protein which aims long-lasting hydrogen production by blocking the PSII repair system thus $O_2$ sensitive hydrogenases catalysis hydrogen production for a longer period of time under anaerobic and sulfur deprived conditions. Chlamydomonas CC124 as control strain and D1 mutant strains(D240, D239-40 and D240-41)are cultured photomixotrophically at $80{\mu}mol\;photons\;m^{-2}s^{-1}$, by two sides. Cells are grown in TAP medium as aerobic stage for culture growth; in logarithmic phase cells are transferred from aerobic to an anaerobic and sulfur deprived TAP- S medium and 12 mg/L initial chlorophyll content for $H_2$ production which is monitored by the water columns and later detected by Gas Chromatography. Total produced hydrogen was $82{\pm}10$, $180{\pm}20$, $196{\pm}20$, $290{\pm}30mL$ for CC124, D240, D239-40, D240-41, respectively. $H_2$ production rates for mutant strains was $1.3{\pm}0.5mL/L.h$ meanwhile CC124 showed 2-3 fold lower rate as $0.57{\pm}0.2mL/L.h$. Hydrogen production period was $5{\pm}2days$ for CC124 and mutants showed a longer production time for $9{\pm}2days$. It is seen from the results that $H_2$ productions for mutant strains have a significant effect in terms of productivity, yield and production time.

Growth Analysis of Chlamydomonas reinhardtii in Photoautotrophic Culture with Microdroplet Photobioreactor System (미세액적 광생물반응기를 활용한 광독립영양배양에서 Chlamydomonas reinhardtii의 성장성 분석)

  • Sung, Young Joon;Kwak, Ho Seok;Choi, Hong Il;Kim, Jaoon Young Hwan;Sim, Sang Jun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.80-85
    • /
    • 2017
  • Recently, microalgae which can produce high-value products have attracted increasing attention for biological conversion of $CO_2$. However, low photosynthetic efficiency and productivity have limited the practical use of microalgae. Thus, we developed microdroplet photobioreactor for the analysis of photoautotrophic growth of model alga, Chlamydomonas reinhardtii. $CO_2$ transfer rate was increased by integrating micropillar arrays and adjusting height of microchamber. These results were identified by change of cell growth rate and fluorescence intensity. Lastly, the photoautotrophic growth kinetics of C. reinhardtii in microdroplet photobioreactor were investigated under different $CO_2$ concentrations and light intensities for 96 hours. As a result, microdroplet photobioreactor was efficient platform for isolation and rapid evaluation of microalgal strains which have enhanced productivity of high-value products and growth performance.

REPRESSION OF Lhcb GENES FOR CHLOROPHYLL a/b-BINDING PROTEINS UNDER HIGH-LIGHT CONDITIONS IN Chlamydomonas

  • Haruhiko Teramoto;Akira Nakamori;Jun Minagawa;Ono, Taka-aki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.373-375
    • /
    • 2002
  • Lhcb genes encoding light-harvesting chlorophyll-a/b binding (LHC) proteins of photosystem (PS) II were comprehensively characterized using the expressed sequence tag (EST) databases in the green alga, Chlamydomonas reinhardtii. The gene family was composed of eight Lhcb genes including four new genes, which were isolated and sequenced. The effects of light intensity on the levels of mRNAs accumulation of multiple Lhcb genes were studied under various conditions. The results indicate that Lhcb genes are coordinately regulated in response to light conditions, and repressed when the input light energy exceeded the requirement for $CO_2$ assimilation. The effects of high light on the expression of the Lhcb genes observed in the presence of an electron transport inhibitor, DCMU, and in mutants deficient in photosynthetic reaction centers suggest the presence of two alternative mechanisms for regulating the genes expression under high-light conditions.

  • PDF

Dark Hydrogen Production by a Green Microalga, Chlamydomonas reinhardtii UTEX 90

  • SIM SANG JUN;GONG GYEONG TAEK;KIM MI SUN;PARK TAl HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1159-1163
    • /
    • 2005
  • The production of hydrogen by Chlamydomonas reinhardtii UTEX 90, a marine green alga, was performed under dark fermentation. The effects of initial nitrogen and phosphorus concentration on the cell growth and the production of hydrogen and organic substances were investigated. In the growth stage, the maximum dry cell weight (DCW) was 3 g/l when the initial ammonium concentration was 15 mM. In the dark fermentation, the maximum hydrogen production was $3.5\;{\mu}mol/\;mg$ DCW when the initial nitrogen concentration was 7.5 mM. The nitrogen concentration had a greater effect on organic compound and hydrogen production than the phosphorus concentration during the dark fermentation. An investigation of the duration of dark fermentation showed that, at least until three days, dark fermentation should be prolonged for maximum hydrogen production.

Effect of Polyamines on purified DNA Methyltransferase from Chlamydomonas reinhardtii (Chlamydomonas reinhardtii로부터 분리, 정제된 DNA Methyltransferase 활성에 대한 Polyamine의 영향)

  • 이명민
    • Journal of Plant Biology
    • /
    • v.32 no.4
    • /
    • pp.331-341
    • /
    • 1989
  • DNA methyltransferase was purified 282.6-fold from Chlamydomonas reinhardtii 21gr (mt+) gametic cell to examine the effect of polyamine on the enzyme acctivity. Polyacrylamide gel electrophoresis(PAGE) revealed at least three bands(1 major band, 2 minor bands). Among these, the major band represents DNA methyltransferase. Polyacrylamide gel electrophoresis in the presence of 0.1% sodium dodecylsulfate(SDS-PAGE) revealed a major band with M.W. 60,000. DNA methyltransferase activity was inhibited more effectively by spermine than by spermidine, and the inhibition by putrescine was smaller than spermine and spermidine. DNA methyltransferase activity was inhibited by 40% and 53% at 5mM and 20mM spermine, respectively. In the case of spermidine, the inhibition was 35% at 10mM and 44% at 20mM. However, the inhibition by putrescine appeared only above 5mM and reached about 25% at 20mM.

  • PDF