Browse > Article
http://dx.doi.org/10.9713/kcer.2017.55.1.80

Growth Analysis of Chlamydomonas reinhardtii in Photoautotrophic Culture with Microdroplet Photobioreactor System  

Sung, Young Joon (Department of Chemical and Biological Engineering, Korea University)
Kwak, Ho Seok (Department of Chemical and Biological Engineering, Korea University)
Choi, Hong Il (Department of Chemical and Biological Engineering, Korea University)
Kim, Jaoon Young Hwan (Department of Chemical and Biological Engineering, Korea University)
Sim, Sang Jun (Department of Chemical and Biological Engineering, Korea University)
Publication Information
Korean Chemical Engineering Research / v.55, no.1, 2017 , pp. 80-85 More about this Journal
Abstract
Recently, microalgae which can produce high-value products have attracted increasing attention for biological conversion of $CO_2$. However, low photosynthetic efficiency and productivity have limited the practical use of microalgae. Thus, we developed microdroplet photobioreactor for the analysis of photoautotrophic growth of model alga, Chlamydomonas reinhardtii. $CO_2$ transfer rate was increased by integrating micropillar arrays and adjusting height of microchamber. These results were identified by change of cell growth rate and fluorescence intensity. Lastly, the photoautotrophic growth kinetics of C. reinhardtii in microdroplet photobioreactor were investigated under different $CO_2$ concentrations and light intensities for 96 hours. As a result, microdroplet photobioreactor was efficient platform for isolation and rapid evaluation of microalgal strains which have enhanced productivity of high-value products and growth performance.
Keywords
Microdroplet; Photobioreactor; Chlamydomonas reinhardtii; Photoautotrophic Culture; $CO_2$ Permeation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Mata, A., Fleischman, A. and Roy, S., "Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems," Biomed. Microdevices, 7(4), 281-293(2005).   DOI
2 Park, J. Y., Lee, G. A., Kim, K. Y., Kim, K. Y., Choi, S. A., Jeong, M. J. and Oh, Y. K., "Microalgal Oil Recovery by Solvent Extraction from Nannochloropsis oceanica," Korean Chem. Eng. Res., 52(1), 88-91(2014).   DOI
3 Lim, H. S., Kim, J. Y. H., Kwak, H. S. and Sim, S. J., "Integrated Microfluidic Platform for Multiple Processes from Microalgal Culture to Lipid Extraction," Anal. Chem., 86(17), 8585-8592(2014).   DOI
4 Grima, E. M., Sevilla, J. F., Perez, J. S. and Camacho, F. G., "A Study on Simultaneous Photolimitation and Photoinhibition in Dense Microalgal Cultures Taking into Account Incident and Averaged Irradiances," J. Biotechnol., 45(1), 59-69(1996).   DOI
5 Vonshak, A., Torzillo, G. and Tomaseli, L., "Use of Chlorophyll Fluorescence to Estimate the Effect of Photoinhibition in Outdoor Cultures of Spirulina platensis," J. Appl. Phycol., 6(1), 31-34(1994).   DOI
6 Stephens, E., Ross, I. L., King, Z., Mussgnug, J. H., Kruse, O., Posten, C., Borowitzka, M. A. and Hankamer, B., "An Economic and Technical Evaluation of Microalgal Biofuels," Nat. Biotechnol., 28(2), 126-128(2010).   DOI
7 Weyer, K. M., Bush, D. R., Darzins, A. and Willson, B. D., "Theoretical Maximum Algal Oil Production," Bioenergy Res., 3(2), 204-213(2010).   DOI
8 Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X. and Ingber, D. E., "Soft Lithography in Biology and Biochemistry," Annu. Rev. Biomed. Eng., 3(1), 335-373(2001).   DOI
9 Chu, C.-S. and Lo, Y.-L., "Fiber-Optic Carbon Dioxide Sensor Based on Fluorinated Xerogels Doped with HPTS," Sens. Actuators, B, 129(1), 120-125(2008).   DOI
10 Chisti, Y., "Biodiesel from Microalgae Beats Bioethanol," Trends Biotechnol., 26(3), 126-131(2008).   DOI
11 Christenson, L. and Sims, R., "Production and Harvesting of Microalgae for Wastewater Treatment, Biofuels, and Bioproducts," Biotechnol. Adv., 29(6), 686-702(2011).   DOI
12 Mata, T. M., Martins, A. A. and Caetano, N. S., "Microalgae for Biodiesel Production and Other Applications: A Review," Renewable Sustainable Energy Rev., 14(1), 217-232(2010).   DOI
13 Fair, R. B., "Digital Microfluidics: is a True Lab-on-a-chip Possible?," Microfluid. Nanofluid., 3(3), 245-281(2007).   DOI
14 Pauly, M. and Keegstra, K., "Cell-wall Carbohydrates and Their Modification as a Resource for Biofuels," Plant J., 54(4), 559-568(2008).   DOI
15 Pienkos, P. T. and Darzins, A., "The Promise and Challenges of Microalgal-Derived Biofuels," Biofuels, Bioprod. Biorefin., 3(4), 431-440(2009).   DOI
16 van Poll, M. L., Zhou, F., Ramstedt, M., Hu, L. and Huck, W. T. S., "A Self-Assembly Approach to Chemical Micropatterning of Poly(dimethylsiloxane)," Angew. Chem., Int. Ed., 46(35), 6634-6637(2007).   DOI
17 Zhou, J., Ellis, A. V. and Voelcker, N. H., "Recent Developments in PDMS Surface Modification for Microfluidic Devices," Electrophoresis, 31(1), 2-16(2010).   DOI
18 Dewan, A., Kim, J., McLean, R. H., Vanapalli, S. A. and Karim, M. N., "Growth Kinetics of Microalgae in Microfluidic Static Droplet Arrays," Biotechnol. Bioeng., 109(12), 2987-2996(2012).   DOI
19 Link, D. R., Grasland-Mongrain, E., Duri, A., Sarrazin, F., Cheng, Z., Cristobal, G., Marquez, M. and Weitz, D. A., "Electric Control of Droplets in Microfluidic Devices," Angew. Chem., Int. Ed., 45(16), 2556-2560(2006).   DOI
20 Schneider, T., Kreutz, J. and Chiu, D. T., "The Potential Impact of Droplet Microfluidics in Biology," Anal. Chem., 85(7), 3476-3482(2013).   DOI
21 Pan, J., Stephenson, A. L., Kazamia, E., Huck, W. T., Dennis, J. S., Smith, A. G. and Abell, C., "Quantitative Tracking of the Growth of Individual Algal Cells in Microdroplet Compartments," Integr. Biol., 3(10), 1043-1051(2011).   DOI
22 Chen, F., "High Cell Density Culture of Microalgae in Heterotrophic Growth," Trends Biotechnol., 14(11), 421-426(1996).   DOI
23 Morales-Sanchez, D., Tinoco-Valencia, R., Kyndt, J. and Martinez, A., "Heterotrophic Growth of Neochloris oleoabundans Using Glucose as a Carbon Source," Biotechnol. Biofuels, 6(100), 1-12 (2013).   DOI