• 제목/요약/키워드: Chitin synthase

검색결과 48건 처리시간 0.023초

가래나무 수액의 당성분 분석 및 생리활성 연구 (Studies on the Sugar Analysis and Biological Activity of Sap from Juglans mandshurica Maxim.)

  • 김대욱;최미나;이민성;정회석;변준기;김영수
    • 한국키틴키토산학회지
    • /
    • 제23권4호
    • /
    • pp.262-266
    • /
    • 2018
  • 우리나라토종호두나무인가래나무(Juglans mandshurica Maxim.)의 수액의 유리당 함량은 약 3%로 다른 나무 수액에 비해 높게 나타났으며 미량 원소 중에는 Ca이 30 mg/kg의 농도로 포함되어 있는 것으로 확인되었다. 가래나무 수액 $200{\mu}g/ml$에서 elastase 저해 활성이 약 30% 정도를 보이고 있고 HaCaT 세포를 이용한 피부보습 효과에서는 자외선을 조사한 HaCaT세포의 aquaporin 3 유전자와 hyaluronan synthase 2 유전자 발현을 촉진시켜 hyaluronic acid의 생합성을 증가시킨 것으로 확인되었다. 본 연구를 통해 가래나무 수액의 피부 노화 방지 효능을 최초로 규명하였고 이는 가래나무 수액의 활용도를 높일 수 있는 가능성을 제시한 결과라 사료된다. 다만 물질 분석과 in-vivo 시험, 임상 연구 등 심도 있는 추가 연구가 필요할 것으로 판단된다.

Colletotrichum fructicola, a Member of Colletotrichum gloeosporioides sensu lato, is the Causal Agent of Anthracnose and Soft Rot in Avocado Fruits cv. "Hass"

  • Fuentes-Aragon, Dionicio;Juarez-Vazquez, Sandra Berenice;Vargas-Hernandez, Mateo;Silva-Rojas, Hilda Victoria
    • Mycobiology
    • /
    • 제46권2호
    • /
    • pp.92-100
    • /
    • 2018
  • The filamentous Ascomycota Colletotrichum gloeosporioides sensu lato is a fungus that has been reported worldwide as a causal agent of anthracnose disease in avocado and other crops. In Mexico, this species affects fruits from an early stage of development in the orchard until the post-harvest stage. Although fungicides are continuously applied to control Colletotrichum species, pericarp cankers and soft rot mesocarp in fruits are still frequently observed. Considering the lack of a precise description of the causative agent, the aim of the current study was to determine the pathogens involved in this symptomatology. Twenty-four isolates were consistently obtained from the pericarp of avocado fruits cv. "Hass" collected in the central avocado-producing area of Mexico. Morphological features such as colony growth, conidia size, and mycelial appressorium were assessed. Bayesian multilocus phylogenetic analyses were performed using amplified sequences of the internal transcribed spacer region of the nuclear ribosomal DNA; actin, chitin synthase, glyceraldehyde-3-phosphate dehydrogenase partial genes; and APn2-Mat1-2 intergenic spacer and mating type Mat1-2 partial gene from the nine selected isolates. In addition, fruits were inoculated with a conidial suspension and reproducible symptoms confirmed the presence of Colletotrichum fructicola in this area. This pathogenic species can now be added to those previously reported in the country, such as C. acutatum, C. boninense, C. godetiae, C. gloeosporioides, and C. karstii. Disease management programs to reduce the incidence of anthracnose should include C. fructicola to determine its response to fungicides that are routinely applied, considering that the appearance of new species is affecting the commercial quality of the fruits and shifting the original population structure.

Colletotrichum fioriniae에 의한 호박 과실 탄저병의 발생 보고 (First Report of Colletotrichum fioriniae Causing Anthracnose on Fruit of Pumpkin (Cucurbita moschata) in Korea)

  • 김준영;김병섭
    • 식물병연구
    • /
    • 제26권3호
    • /
    • pp.190-193
    • /
    • 2020
  • 강원도 강릉시 사천면 비닐하우스에서 재배중인 호박 과실에 탄저병이 발생하였다. 병든 호박 과실에 분홍색의 분생포자 층이 동심원으로 나타나 점차 확대되어 과실이 무르는 증상을 나타내었다. 원인균을 규명하기 위하여 순수 분리 후 균학적 특성 및 ITS, GAPDH, CHS-1, HIS3, ACT, TUB2 염기서열 분석결과 Colletotrichum fioriniae로 동정하였다. 또한, 병원성이 확인되었고 접종시험에서 동일한 균이 반복적으로 분리되었다. 따라서, 이러한 결과를 바탕으로 C. fioriniae에 의한 호박 과실에 발생하는 탄저병의 발생을 국내 처음으로 보고한다.

Transcriptome analyses of the ginseng root rot pathogens Cylindrocarpon destructans and Fusarium solani to identify radicicol resistance mechanisms

  • Li, Taiying;Kim, Jin-Hyun;Jung, Boknam;Ji, Sungyeon;Seo, Mun Won;Han, You Kyoung;Lee, Sung Woo;Bae, Yeoung Seuk;Choi, Hong-Gyu;Lee, Seung-Ho;Lee, Jungkwan
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.161-167
    • /
    • 2020
  • Background: The ascomycete fungi Cylindrocarpon destructans (Cd) and Fusarium solani (Fs) cause ginseng root rot and significantly reduce the quality and yield of ginseng. Cd produces the secondary metabolite radicicol, which targets the molecular chaperone Hsp90. Fs is resistant to radicicol, whereas other fungal genera associated with ginseng disease are sensitive to it. Radicicol resistance mechanisms have not yet been elucidated. Methods: Transcriptome analyses of Fs and Cd mycelia treated with or without radicicol were conducted using RNA-seq. All of the differentially expressed genes (DEGs) were functionally annotated using the Fusarium graminearum transcript database. In addition, deletions of two transporter genes identified by RNA-seq were created to confirm their contributions to radicicol resistance. Results: Treatment with radicicol resulted in upregulation of chitin synthase and cell wall integrity genes in Fs and upregulation of nicotinamide adenine dinucleotide dehydrogenase and sugar transporter genes in Cd. Genes encoding an ATP-binding cassette transporter, an aflatoxin efflux pump, ammonium permease 1 (mep1), and nitrilase were differentially expressed in both Fs and Cd. Among these four genes, only the ABC transporter was upregulated in both Fs and Cd. The aflatoxin efflux pump and mep1 were upregulated in Cd, but downregulated in Fs, whereas nitrilase was downregulated in both Fs and Cd. Conclusion: The transcriptome analyses suggested radicicol resistance pathways, and deletions of the transporter genes indicated that they contribute to radicicol resistance.

고온에서 배추좀나방 유충 지방체의 유전자 발현 변화 분석 (Analysis of Gene Expression in Larval Fat Body of Plutella Xylostella Under High Temperature)

  • 김광호;이대원
    • 한국환경농학회지
    • /
    • 제37권4호
    • /
    • pp.324-332
    • /
    • 2018
  • 곤충은 변온동물로 육지생태계에서 주로 서식하면서, 식물의 생체량 조절, 종다양성 유지에 중요한 역할을 한다. 주변온도는 변온동물인 곤충의 생리적 반응속도, 뿐만 아니라 생존과 분포를 결정하며, 기후변화에 영향을 준다. 본 연구는 높은 온도에서 곤충의 적응성에 관련있는 유전자를 전사체를 이용하여 동정하였다. 고온에서 사육된 배추좀나방 유충의 지방체로부터 차세대 염기서열 분석법을 이용하여 전사체를 확보하였다. 대사중심인 지방체에서 구조단백질, 열충격단백질, 항산화단백질, 해독효소 들이 동정되었다. 이들 중에서 표피단백질(표피단백질, 키틴합성효소, 엑틴, 카이틴 합성), 스트레스관련단백질(시토크롬 P450), 열충격단백질, 한산화단백질은 발현이 증가되었으나, glutathione S transferase 발현은 오히려 감소되었다. 이상의 결과는 기후변화의 주요인인 온난화에 대한 해충의 생리적 대응과 온도적응을 이해하는데 필요한 기초자료를 제시한다.

Re-identification of Colletotrichum acutatum Species Complex in Korea and Their Host Plants

  • Le Dinh Thao;Hyorim Choi;Yunhee Choi;Anbazhagan Mageswari;Daseul Lee;Seung-Beom Hong
    • The Plant Pathology Journal
    • /
    • 제39권4호
    • /
    • pp.384-396
    • /
    • 2023
  • Colletotrichum acutatum species complex is one of the most important groups in the genus Colletotrichum with a high species diversity and a wide range of host plants. C. acutatum and related species have been collected from different plants and locations in Korea and deposited into the Korean Agricultural Culture Collection (KACC), National Institute of Agricultural Sciences since the 1990s. These fungal isolates were previously identified based mainly on morphological characteristics, and a limitation of molecular data was provided. To confirm the identification of species, 64 C. acutatum species complex isolates in KACC were used in this study for DNA sequence analyses of six loci: nuclear ribosomal internal transcribed spacers (ITS), betatubulin 2 (TUB2), histone-3 (HIS3), glyceraldehyde3-phosphate dehydrogenase (GAPDH), chitin synthase 1 (CHS-1), and actin (ACT). The molecular analysis revealed that they were identified in six different species of C. fioriniae (24 isolates), C. nymphaeae (21 isolates), C. scovillei (12 isolates), C. chrysanthemi (three isolates), C. lupini (two isolates), and C. godetiae (one isolate), and a novel species candidate. We compared the hosts of KACC isolates with "The List of Plant Diseases in Korea", previous reports in Korea and global reports and found that 23 combinations between hosts and pathogens could be newly reported in Korea after pathogenicity tests, and 12 of these have not been recorded in the world.

온도변화에 따른 담배나방 유충 지방체의 유전자 발현 비교 분석 (Comparison of Gene Expression in Larval Fat Body of Helicoverpa assulta in Different Temperature Conditions)

  • 차욱현;김광호;이대원
    • 한국응용곤충학회지
    • /
    • 제57권3호
    • /
    • pp.165-175
    • /
    • 2018
  • 곤충은 넓은 범위의 온도영역에 사는 것으로 알려져 있으나, $40^{\circ}C$가 넘는 고온이나 빙결온도 이하의 저온에서는 생존이 어렵다. 본 연구는 사육온도 조건이 다른 환경에서 대사중심 조직인 지방체의 유전자 발현을 분석하기 위해, 온도조건을 달리하여 담배나방을 저온 사육충 ($3{\sim}10^{\circ}C$), 고온 사육충 ($35^{\circ}C$)로 나누고 상온 사육충 ($25^{\circ}C$)을 대조구로 사용하여 전사체 분석을 수행하였다. 저온에서 특이적으로 높은 발현을 보인 유전자는 표피단백질, ${\Delta}9$ 불포화효소, 글리세롤 3-인산 탈수소효소이며, 저온에서 발현이 낮아진 유전자는 키틴 합성효소, catalase, UDP-당전이 효소이다. 고온에서 특이적으로 높은 발현을 보인 유전자는 과산화물제거효소, metallothionein 2, phosphenolpyruvate carboxykinase, 트레할로스 운반단백질이었다. 고온에서 높고 저온에서 낮은 대조적 발현을 보인 유전자는 열충격단백질, glutathione peroxidase이었다. 이들 온도 특이적이거나 대조적 발현을 보이는 유전자는 기후변화에 관련한 특이마커로 활용이 가능할 것으로 사료된다.

Morphological and Genetic Characteristics of Colletotrichum gloeosporioides Isolated from Newly Emerging Static-Symptom Anthracnose in Apple

  • Jeon, Yongho;Cheon, Wonsu
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2014년도 추계학술대회 및 정기총회
    • /
    • pp.34-34
    • /
    • 2014
  • Filamentous fungi of the genus Colletotrichum (teleomorph, Glomerella) are considered major plant pathogens worldwide. Cereals, legumes, vegetables, and fruit trees may be seriously affected by this pathogen (1). Colletotrichum species cause typical disease symptoms known as anthracnoses, characterized by sunken necrotic tissue, where orange conidial masses are produced. Anthracnose appears in both developing and mature plant tissues (2). We investigated disease occurrence in apple orchards from 2013 to 2014 in northern Gyeongbuk province, Korea. Typical anthracnose with advanced symptoms was observed in all apple orchards studied. Of late, static fruit spot symptoms are being observed in apple orchards. A small lesion, which does not expand further and remains static until the harvesting season, is observed at the beginning of fruit growth period. In our study, static symptoms, together with the typical symptoms, were observed on apples. The isolated fungus was tested for pathogenicity on cv. 'Fuji apple' (fully ripe fruits, unripe fruits, and cross-section of fruits) by inoculating the fruits with a conidial suspension ($10^5$ conidia/ml). In apple inoculated with typical anthracnose fungus, the anthracnose symptoms progressed, and dark lesions with salmon-colored masses of conidia were observed on fruit, which were also soft and sunken. However, in apple inoculated with fungi causing static symptoms, the size of the spots did not increase. Interestingly, the shape and size of the conidia and the shape of the appressoria of both types of fungi were found to be similar. The conidia of the two types of fungi were straight and cylindrical, with an obtuse apex. The culture and morphological characteristics of the conidia were similar to those of C. gloeosporioides (5). The conidia of C. gloeosporioides germinate and form appressoria in response to chemical signals such as host surface wax and the fruitripening hormone ethylene (3). In this study, the spores started to germinate 4 h after incubation with an ethephon suspension. Then, the germ tubes began to swell, and subsequently, differentiation into appressoria with dark thick walls was completed by 8 h. In advanced symptoms, fungal spores of virtually all the appressoria formed primary hyphae within 16 h. However, in the static-symptom fungus spores, no primary hyphae formed by 16 h. The two types of isolates exhibited different growth rates on medium containing apple pectin, Na polypectate, or glucose as the sole carbon. Static-symptom fungi had a >10% reduction in growth (apple pectin, 14.9%; Na polypectate, 27.7%; glucose, 10.4%). The fungal isolates were also genetically characterized by sequencing. ITS regions of rDNA, chitin synthase 1 (CHS1), actin (ACT), and ${\beta}$-tubulin (${\beta}t$) were amplified from isolates using primer pairs ITS 1 and ITS 4 (4), CHS-79F and CHS-354R, ACT-512F and ACT-783R, and T1 and ${\beta}t2$ (5), respectively. The resulting sequences showed 100% identity with sequences of C. gloeosporioides at KC493156, and the sequence of the ${\beta}$t gene showed 100% identity with C. gloeosporioides at JX009557.1. Therefore, sequence data from the four loci studied proves that the isolated pathogen is C. gloeosporioides. We also performed random amplified polymorphic DNA-PCR, which showed clearly differentiated subgroups of C. gloeosporioides genotypes. The clustering of these groups was highly related to the symptom types of the individual strains.

  • PDF