Browse > Article
http://dx.doi.org/10.5656/KSAE.2018.06.0.021

Comparison of Gene Expression in Larval Fat Body of Helicoverpa assulta in Different Temperature Conditions  

Cha, Wook Hyun (Department of Life Sciences, School of Chemistry and Life Sciences, Kyungsung University)
Kim, Kwang Ho (Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Dae-Weon (Department of Life Sciences, School of Chemistry and Life Sciences, Kyungsung University)
Publication Information
Korean journal of applied entomology / v.57, no.3, 2018 , pp. 165-175 More about this Journal
Abstract
Insects are known to live at wide range of temperature, but can not survive when they are exposed to over $40^{\circ}C$ or below supercooling point. The larvae of Helicoverpa assulta have been reared at high ($35^{\circ}C$), low (3 to $10^{\circ}C$), and room temperature ($25^{\circ}C$; control). To identify stress-related genes, the transcriptomes of fat body have been analyzed. Genes such as cuticular proteins, fatty acyl ${\Delta}9$ desaturase and glycerol 3 phosphate dehydrogenase were up-regulated whereas chitin synthase, catalase, and UDP-glycosyltransferase were down-regulated at low temperature. Superoxide dismutase, metallothionein 2, phosphoenolpyruvate carboxykinase and trehalose transporter have been up-regulated at high temperature. In addition, expressions of heat shock protein and glutathione peroxidase were increased at high temperature, but decreased at low temperature. These temperature-specific expressed genes can be available as markers for climate change of insect pests.
Keywords
Climate change; Helicoverpa assulta; Transcriptome; Temperature; Marker;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, X., Schuler, M.A., Berenbaum, M.R., 2007 Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Ann. Rev. Entomol. 52, 231-253.   DOI
2 Lomate, P., Sangole, K., Sunkar, R., Hivrale, V., 2015. Superoxide dismutase activities in the midgut of Helicoverpa armigera larvae: identification and biochemical properties of a manganese superoxide dismutase. Open Access Insect Physiol. 5, 13-20.
3 Mitsumasu, K., Azuma, M., Niimi, T., Yamashita, O., Yaginuma, T., 2005. Membrane penetrating trehalase from silkworm Bombyx mori. Molecular cloning and localization in larval midgut. Insect Mol. Biol. 14, 501-508.   DOI
4 Mizokami, H., Yoshitama, K., 2009. Sequestration and metabolism of host-plant flavonoids by the Pale Grass Blue, Pseudozizeeria maha (Lepidoptera: Lycaenidae). J. Entomol. Sci. 12, 171-176.   DOI
5 Mori, H., Lee, J.H., Okuyama, M., Nishimoto, M., Ohguchi, M., Kim, D., Kimura, A., Chiba, S., 2009. Catalytic reaction mechanism based on alpha-secondary deuterium isotope effects in hydrolysis of trehalose by European honeybee trehalase. Biosci. Biotechnol. Biochem. 73, 2466-2473.   DOI
6 Neven, L.G., 2000. Physiological responses of insects to heat. Postharvest Biol. Technol. 21, 103-111.   DOI
7 Park, Y., Kim, K.H., Kim, Y., 2014. Rapid Cold Hardening of Thrips palmi (Thysanoptera: Thripidae). Environ. Entomol. 43, 1076-1083.   DOI
8 Park, Y., Kim, Y., 2013. RNA interference of glycerol biosynthesis suppresses rapid cold hardening of the beet armyworm, Spodoptera exigua. J. Exp. Biol. 216, 4196-4203.   DOI
9 Ranson, H., Hemingway, J., 2005. Glutathione transferases, in: Gilbert, L.I., Iatrou, K., Gill, S.S. (Eds.), Comprehensive molecular insect sciencepharmacology. Elsevier, Oxford, UK, pp. 383-389.
10 Robertson, H.M., Martos, R., Sears, C.R., Todres, E.Z., Walden, K.K.O., Nardi, J.B., 1999. Diversity of odourant binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antennae. Insect Mol. Biol. 8, 501-518.   DOI
11 Shukla, E., Thorat, L.J., Nath, B.B., Gaikwad, S.M., 2015. Insect trehalase: physiological significance and potential applications. Glycobiology 25, 357-367.   DOI
12 Ahn, S.J., Badenes-Perez, F.R., Reichelt, M., Svatos, A., Schneider, B., Gershenzon, J., Heckel, D.G., 2011. Metabolic detoxification of capsaicin by UDP glycosyltransferase in three Helicoverpa species. Arch. Insect Biochem. Physiol. 78, 104-118.   DOI
13 Ahn, S.J., Vogel, H., Heckel, D.G., 2012. Comparative analysis of the UDP-glycosyltransferase multigene family in insects. Insect Biochem. Mol. Biol. 42, 133-147.   DOI
14 Sable, M.G., Rana, D.K., 2016. Impact of global warming on insect behavior-A review. Agric. Rev. 37, 81-84.
15 Sang, W., Ma, W.H., Qiu, L., Zhu, Z.H., Lei, C.L., 2012. The involvement of heat shock protein and cytochrome P450 genes in response to UV-A exposure in the beetle Tribolium castaneum. J. Insect Physiol. 58, 830-836.   DOI
16 Sharma, S., Rais, A., Sandhu, R., Nel, W., Ebadi, M., 2013. Clinical significance of metallothioneins in cell therapy and nanomedicine. Int. J. Nanomed. 8, 1477-1488.
17 Stanley, D.W., Kim, Y., 2014. Eicosanoid signaling in insects: from discovery to plant protection. Crit. Rev. Plant Sci. 33, 20-63.   DOI
18 Stetina, T., Kostal, V., Korbelova, J., 2015. The role of inducible Hsp70, and other heat shock proteins, in adaptive complex of cold tolerance of the fruit fly (Drosophila melanogaster). PLoS One 10, e0128976.   DOI
19 Sugumaran, M., 2010. Chemistry of cuticular sclerotization. Adv. Insect Physiol. 39, 151-209.
20 Takiguchi, M., Niimi, T., Su, Z.H., Yaginuma, T., 1992. Trehalase from male accessory gland of an insect, Tenebrio molitor. cDNA sequencing and developmental profile of the gene expression. Biochem. J. 288, 19-22.   DOI
21 Tasaki, E., Kobayashi, K., Matsuura, K., Iuchi, Y., 2017. An efficient antioxidant system in a long-lived termite queen. PLoS One 12, e0167412.   DOI
22 Thompson, S.N., 2003. Trehalose-the insect 'blood' sugar. Adv. Insect Physiol. 31, 205-285.
23 Ruttkay-Nedecky, B., Nejdl, N., Gumulec, J., Zitka, O., 2013. The role of metallothionein in oxidative stress. Int. J. Mol. Sci. 14, 6044-6066.   DOI
24 Cai, Z., Chen, J., Cheng, J., Lin, T., 2017. Overexpression of three heat shock proteins protects Monochamus alternatus (Coleoptera: Cerambycidae) from thermal stress. J. Insect Sci. 17, 1-11   DOI
25 Andrews, G.K., 2000. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem. Pharmacol. 59, 95-104.   DOI
26 Aucoin, R.R., Philogene, B.J.R., Arnason, J.T., 1991. Antioxidant enzymes as biochemical defenses against phototoxin-induced oxidative stress in three species of herbivorous Lepidoptera. Arch. Insect Biochem. Physiol. 16, 139-152.   DOI
27 Basha, E., O'Neill, H., Vierling, E., 2012. Small heat shock proteins and ${\alpha}$-crystallins: dynamic proteins with flexible functions. Trends Biochem. Sci. 37, 106-117.   DOI
28 Bashan, M., Cakmak, O., 2005. Changes in composition of phospholipid and triacylglycerol fatty acids prepared from prediapausing and diapausing individuals of Dolycoris baccarum and Piezodorus lituratus (Heteroptera: Pentatomidae). Ann. Entomol. Soc. Am. 98, 575-579.   DOI
29 Bouhin, H., Charles, J.-P., Quennedey, B., Courrent, A., Delachambre, J., 1992. Characterization of a cDNA clone encoding a glycine-rich cuticular protein of Tenebrio molitor: developmental expression and effect of a juvenile hormone analogue. Insect Mol. Biol. 1, 53-62.   DOI
30 Cha, W.H., Lee, D.-W., 2016. Identification of rapid cold hardeningrelated genes in the tobacco budworm, Helicoverpa assulta. J. Asia-Pacific Entomol. 19, 1061-1066.   DOI
31 Chung, H., Carroll, S.B., 2015. Wax, sex and the origin of species: Dual roles of insect cuticular hydrocarbons in adaptation and mating. Bioessays 37, 822-830.   DOI
32 Andersen, S.O., 2010. Insect cuticular sclerotization. Insect Biochem. Mol. Biol. 40, 166-178.   DOI
33 Wiesen, B., Krug, E., Fiedler, K., Wray, V., Proksch, P., 1994. Sequestration of host-plant-derived flavonoids by lycaenid butterfly Polyommatus icarus. J. Chem. Ecol. 20, 2523-2538.   DOI
34 Wang, Q., Hasan, G., Pikielny, C.W., 1999. Preferential expression of biotransformation enzymes in the olfactory organs of Drosophila melanogaster, the antennae. J. Biol. Chem. 274, 10309-10315.   DOI
35 Wang, Y., Oberley, L.W., Murhammer, D.W., 2001. Antioxidant defense systems of two Lepidopteran insect cell lines. Free Radic. Biol. Med. 30, 1254-1262.   DOI
36 Weirich, G.F., Collins, A.M., Williams, V.P., 2002. Antioxidant enzymes in the honey bee, Apis mellifera. Apidologie 33, 3-14.   DOI
37 Zhang, J., Goyer, C., Pelletier, Y., 2008. Environmental stresses induce the expression of putative glycine-rich insect cuticular protein genes in adult Leptinotarsa decemlineata (Say). Insect Mol. Biol. 17, 209-216.   DOI
38 Yamamura, K., Kiritani, K., 1998. A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl. Entomol. Zool. 33, 289-298.   DOI
39 Yang, C.Y., Jeon, H.Y., Cho, M.R., Kim, D.S., Yiem, M.S., 2004. Seasonal occurrence of oriental tobacco budworm (Lepidoptera: Noctuidae) male and chemical control at red pepper fields. Korean J. Appl. Entomol. 43, 49-54.
40 Zachariassen, K.E., Kristiansen, E., 2000. Ice nucleation and antinucleation in nature. Cryobiology 41, 257-279.   DOI
41 Vincent, J.F.V., 2009. If it's tanned it must be dry: a critique. J. Adhes. 85, 755-769.   DOI
42 Drobnis, E.Z., Crowe, L.M., Berger, T., Anchordoguy, T.J., Overstreet, J.W., Crowe, J.H., 1993. Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model. J. Exp. Zool. 265, 432-437.   DOI
43 Clark, M.S., Worland, M.R., 2008. How insects survive the cold: molecular mechanisms. J. Comp. Physiol. B 178, 917-933.   DOI
44 Colinet, H., Lee, S.F., Hoffmann, A., 2010. Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster. FEBS J. 277, 174-185.   DOI
45 Cutler, R.G., 1991. Human longevity and aging: possible role of reactive oxygen species. Ann. N. Y. Acad. Sci. 621, 1-28.   DOI
46 Droge, W., 2002. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47-95.   DOI
47 Duman, J.G., 2001. Antifreeze and ice nucleator proteins in terrestrial arthropods. Ann. Rev. Physiol. 63, 327-357.   DOI
48 Eigenheer, R.A., Nicolson, S.W., Schegg, K.M., Hull, J.J., Schooley, D.A., 2002. Identification of a potent antidiuretic factor acting on beetle Malpighian tubules. Proc. Nat'l. Acad. Sci. USA 99, 84-89.   DOI
49 Fang, S.-M., 2012. Insect glutathione S-transferase: a review of comparative genomic studies and response to xenobiotics. Bull. Insectol. 65, 265-271.
50 Feyereisen, R., 1999. Insect P450 enzymes. Ann. Rev. Entomol. 44, 507-533.   DOI
51 Han, M.-W., Lee, J.-H., 1998. Survival and development of overwintering pupae of the oriental tobacco budworm, Helicoverpa assulta, from different locality. Korean J. Appl. Entomol. 37, 127-135.
52 Finkel, T., Holbrook, N.J., 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247.   DOI
53 Garcia-Reina, A., Rodriguez-Garcia, M.J., Ramis, G., Galian, J., 2017. Real-time cell analysis and heat shock protein gene expression in the TcA Tribolium castaneum cell line in response to environmental stress conditions. Insect Sci. 24, 358-370.   DOI
54 Goto, S., Kimura, M., 1998. Heat-and cold-shock responses and temperature adaptations in subtropical and temperate species of Drosophila. J. Insect Physiol. 44, 1233-1239.   DOI
55 Guarente, L., Kenyon, C., 2000. Genetic pathways that regulate ageing in model organisms. Nature 408, 255-262.   DOI
56 Halliwell, B., 2007. Biochemistry of oxidative stress. Inflammation 35, 1147-1150.
57 Hemingway, J., Hawkes, N.J., McCarroll, L., Ranson, H., 2004. The molecular basis of insecticide resistance in mosquitoes. Insect. Biochem. Mol. Biol. 34, 653-665.   DOI
58 Hopkins, T.L., Kramer, K.J., 1992. Insect cuticle sclerotization. Ann. Rev. Entomol. 37, 273-302.   DOI
59 Kim, Y., Ahmed, S., Stanley, D., An, C., 2018. Eicosanoid-mediated immunity in insects. Dev. Comp. Immunol. 83, 130-143.   DOI
60 Kim, Y., Lee, D.-W., Jung, J.K., 2017. Rapid cold-hardening of a subtropical species, Maruca vitrata (Lepidoptera: Crambidae), accompanies hypertrehalosemia by upregulating trehalose-6-phosphate synthase. Environ. Entomol. 46, 1432-1438.   DOI
61 King, A.M., MacRae, T.H., 2015. Insect heat shock proteins during stress and diapause. Ann. Rev. Entomol. 60, 59-75.   DOI
62 Klaassen, C.D., Liu, J., Diwan, B.A., 2009. Metallothionein protection of cadmium toxicity. Toxicol. Appl. Pharmacol. 238, 215-220.   DOI