Browse > Article
http://dx.doi.org/10.5338/KJEA.2018.37.4.43

Analysis of Gene Expression in Larval Fat Body of Plutella Xylostella Under High Temperature  

Kim, Kwang Ho (Crop Protection Division, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Dae-Weon (Department of Life Sciences, School of Chemistry and Life Sciences, Kyungsung University)
Publication Information
Korean Journal of Environmental Agriculture / v.37, no.4, 2018 , pp. 324-332 More about this Journal
Abstract
BACKGROUND: Insects are ectothermic organisms in terrestrial ecosystems and play various roles such as controlling plant biomass and maintaining species diversity. Because insects are ectothermic, their physiological responses are very sensitive to environmental temperature which determines survival and distribution of insect population and that affects climate change. This study aimed to identification of genes contributing to fitness under high temperature. METHODS AND RESULTS: To identify genes contributing to fitness under high temperature, the transcriptomes of fat body in Plutella xyostella larva have been analyzed via next generation sequencing. From the fat body transcriptomes, structure-related proteins, heat shock proteins, antioxidant enzymes and detoxification proteins were identified. Genes encoding proteins such as structural proteins (cuticular proteins, chitin synthase and actin), stress-related protein (cytochrome P450), heat shock protein and antioxidant enzyme (catalase) were up-regulated at high temperature. In contrast expression of glutathione S transferase was down-regulated. CONCLUSION: Identifications of temperature-specific up- or down-regulated genes can be useful for detecting temperature adaptation and understanding physiological responses in insect pests.
Keywords
Gene expression; Plutella xylostella; Temperature; Transcriptome;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pavlidi, N., Vontas, J., & Van Leeuwen, T. (2018). The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors, Curr. Opin. Insect Sci. 27, 97-102.   DOI
2 Peyser, R. D., Lanno, S. M., Shimshak, S. J., & Coolon, J. D. (2017). Analysis of cytochrome P450 contribution to evolved plant toxin resistance in Drosophila sechellia, Insect Mol. Biol. 26, 715-720.   DOI
3 Rewitz, K. F., & Gilbert, L. I. (2008). Daphnia Halloween genes that encode cytochrome P450s mediating the synthesis of the arthropod molting hormone: evolutionary implications, BMC Evol. Biol. 8, 60.   DOI
4 Riveron, J. M., Yunta, C., Ibrahim, S. S., Djouaka, R., Irving, H., Menze, B. D., Ismail, H. M., Hemingway, J., Ranson, H., Albert, A., & Wondji, C. S. (2014). A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector, Genome Biol. 2014, 15.
5 Sable, M. G., & Rana, D. K. (2016). Impact of global warming on insect behavior - A review, Agricultural Rev. 37, 81-84.
6 Strode, C., Wondji, C. S., David, J. P., Hawkes, N. J., Lumjuan, N., Nelson, D. R., Drane, D. R., Karunaratne, S. H., Hemingway, J., Black, W. C., & Ranson, H. (2008). Genomic analysis of detoxification genes in the mosquito Aedes aegypti, Insect Biochem. Mol. Biol. 38, 113-123.   DOI
7 Sunday, J. M., Bates, A. E., & Dulvy, N. K. (2012). Thermal tolerance and the global redistribution of animals, Nat. Clim. Chang. 2, 686-690.   DOI
8 Sunday, J. M., Bates, A. E., Kearney, M. R., Colwell, R. K., Dulvy, N. K., Longino, J. T., & Huey, R. B. (2014). Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation, Proc. Natl. Acad. Sci. USA. 111, 5610-5615.   DOI
9 Talekar, N., & Shelton, A. (1993). Biology, ecology, and management of the diamondback moth. Annu. Rev. Entomol. 38, 275-301.   DOI
10 Taylor, R. P., & Benjamin, I. J. (2005). Small heat shock proteins: a new classification scheme in mammals, J. Mol. Cell. Cardiol. 38, 433-444.   DOI
11 Thomas, J. H. (2007). Rapid birth-death evolution specific to xenobiotic cytochrome P450 genes in vertebrates, PLOS Genet. 3, e67.   DOI
12 Tissieres, A., Mitchell, H. K., & Tracy, U. M. (1974). Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs, J. Mol. Biol. 84, 389-398.   DOI
13 Vucic-Pestic, O., Ehnes, R. B., Rall, B. C., & Brose, U. (2011). Warming up the system: higher predator feeding rates but lower energetic efficiencies, Global Change Biol. 17, 1301-1310.   DOI
14 Watson, G. S., Watson, J. A., & Cribb, B. W. (2017). Diversity of cuticular micro- and nanostructures on insects: properties, functions, and potential applications, Annu. Rev. Entomol. 62, 185-205.   DOI
15 Wilding, C. S., Weetman, D., Rippon, E. J., Steen, K., Mawejje, H. D., Barsukov, I., & Donnelly, M. J. (2015). Parallel evolution or purifying selection, not introgression, explains similarity in the pyrethroid detoxification linked GSTE4 of Anopheles gambiae and An. Arabiensis, Mol. Genet. Genomics 290, 201-215.   DOI
16 Xu, Z.-B., Zou, X.-P., Zhang, N., Feng, Q.-L., & Zheng, S.-C. (2015). Detoxification of insecticides, allelochemicals and heavy metals by glutathione S-transferase SlGSTE1 in the gut of Spodoptera litura, Insect Sci. 22, 503-511.   DOI
17 Abdollahi, M., Ranjbar, A., Shadnia, S., Nikfar, S., & Rezaie, A. (2004). Pesticides and oxidative stress: a review, Med. Sci. Monitor 10, Ra141-147.
18 Yamamoto, K., Nagaoka, S., Banno, Y., & Aso, Y. (2009). Biochemical properties of an omega-class glutathione S-transferase of the silkmoth, Bombyx mori, Comp. Biochem. Physiol. C Toxicol. Pharmacol. 149, 461-467.   DOI
19 Yamamoto, K., & Yamada, N. (2016). Identification of a diazinon metabolizing glutathione S-transferase in the silkworm, Bombyx mori, Sci. Rep. 6.
20 Zhang, X., Wu, M., Yao, H., Yang, Y., Cui, M., Tu, Z., Stallones, L., & Xiang, H. (2016). Pesticide poisoning and neurobehavioral function among farm workers in Jiangsu, People's Republic of China, Cortex 74, 396-404.   DOI
21 Angilletta, M. J., Steury, T. D., & Sears, M. W. (2004). Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle, Integr. Comp. Biol. 44, 498-509.   DOI
22 Arrigo, A.-P. (1987). Cellular localization of HSP23 during Drosophila development and following subsequent heat shock, Dev. Biol. 122, 39-48.   DOI
23 Bagchi, R., Gallery, R. E., Gripenberg, S., Gurr, S. J., Narayan, L., Addis, C. E., Freckleton, R. P., & Lewis, O. T. (2014). Pathogens and insect herbivores drive rain forest plant diversity and composition, Nature 506, 85-88.   DOI
24 Balabanidou, V., Grigoraki, L., & Vontas, J. (2018). Insect cuticle: a critical determinant of insecticide resistance, Curr. Opin. Insect Sci. 27, 68-74.   DOI
25 Bruey, J. M., Ducasse, C., Bonniaud, P., Ravagnan, L,, Susin, S. A., Diaz-Latoud, C., Gurbuxani, S., Arrigo, A. P., Kroemer, G., Solary, E., & Garrido, C. (2000). Hsp27 negatively regulates cell death by interacting with cytochrome c, Nat. Cell Biol. 2, 645-652.   DOI
26 Balabanidou, V., Kampouraki, A., MacLean, M., Blomquist, G. J., Tittiger, C., Juarez, M. P., Mijailovsky, S. J., Chalepakis, G., Anthousi, A., Lynd, A., Antoine, S., Hemingway, J., Ranson, H., Lycett, G. J., & Vontas, J. (2016). Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae, Proc. Nat'l Acad. Sci. USA. 113, 9268-9273.   DOI
27 Barrett, R. D., Paccard, A., Healy, T. M., Bergek, S., Schulte, P. M., Schluter, D., & Rogers, S. M. (2011). Rapid evolution of cold tolerance in stickleback, Proc. Biol. Sci. 278, 233-238.   DOI
28 Bauerfeind, S. S., & Fischer, K. (2014). Simulating climate change: Temperature extremes but not means diminish performance in a widespread butterfly, Popul. Ecol. 56, 239-520.   DOI
29 Casique-Arroyo, G., Martinez-Gallardo, N., de la Vara, L. G., & Delano-Frier, J. P. (2014). Betacyanin biosynthetic genes and enzymes are differentially induced by (a)biotic stress in Amaranthus hypochondriacus, PLOS ONE 6, e99012.
30 Chowdary, T. K., Raman, B., Ramakrishna, T., & Rao, C. M. (2004). Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity, Biochem. J. 381, 379-387.   DOI
31 Chown, S. L., Hoffmann, A. A., Kristensen, T. N., Angilletta, M. J., Stenseth, N. C., & Pertoldi, C. (2010). Adapting to climate change: a perspective from evolutionary physiology, Climate Res. 43, 3-15.   DOI
32 Chown, S. L., Terblanche, J. S., & Simpson, S. J. (2006). Physiological diversity in insects: ecological and evolutionary contexts, Adv. Insect Physiol. 33, 50-152.
33 Enayati, A. A., Ranson, H., & Hemingway, J. (2005). Insect glutathione transferases and insecticide resistance, Insect Mol. Biol. 14, 3-8.   DOI
34 Dennis, D., & Weisenburger, M. D. (1993). Human health effects of agrichemical use, Human Pathol. 24, 571-576.   DOI
35 Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude, Proc. Natl. Acad. Sci. USA. 105, 6668-6672.   DOI
36 Ehrnsperger, M., Graber, S., Gaestel, M., & Buchner, J. (1997). Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation, EMBO J. 16, 221-229.   DOI
37 Goto, S., & Kimura, M. (1998). Heat- and cold-shock responses and temperature adaptations in subtropical and temperate species of Drosophila, J. Insect Physiol. 44, 1233-1239.   DOI
38 Grazyna, C., Hanna, C., Adam A., & Magdalena, B. M. (2017). Natural antioxidants in milk and dairy products, Int. J. Dairy Technol. 70, 165-178.   DOI
39 Guittard, E., Blais, C., Maria, A., Parvy, J. P., Parishna, S., Lumb, C., Lafont, R., Daborn, P. J., & Dauphin-Villemant, C. (2011). CYP18A1, a key enzyme of Drosophila steroid hormone inactivation, is essential for metamorphosis, Dev. Biol. 349, 35-45.   DOI
40 Habig, W. H., Pabst, M. J., & Jakoby, W. B., (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation, J. Biol. Chem. 249, 7130-7139.
41 Haslbeck, M., Walke, S., Stromer, T., Ehrnsperger, M., White, H. E., Chen, S., Saibil, H. R., & Buchner, J. (1999). Hsp26: a temperature-regulated chaperone, EMBO J. 18, 6744-6751.   DOI
42 Kim, E., Choi, B., Park, Y., Cha, O., Jung, C., Lee, D., Kim, K., & Kim, Y. (2014). Overwintering conditions of the Diamondback moth and genetic variation of overwintering populations, Kor. J. Appl. Entomol. 53, 353-363.
43 Hillebrand, H., Borer, E. T., Bracken, M. E. S., Cardinale, B. J., Cebrian, J., Cleland, E. E., Elser, J. J., Gruner, D. S., Harpole, W. S., Ngai, J. T., Sandin, S., Seabloom, E. W., Shurin, J. B., Smith, J. E., & Smith, M. D. (2009). Herbivore metabolism and stoichiometry each constrain herbivory at different organizational scales across ecosystems, Ecology Lett. 12, 516-527.   DOI
44 Hopkins, T. L., & Kramer, K. J. (1992). Insect cuticle sclerotization, Annu. Rev. Entomol. 37, 273-302.   DOI
45 Kaplanoglu, E., Chapman, P., & Scott, Donly, C. (2017). Overexpression of a cytochrome P450 and a UDP glycosyltransferase is associated with imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata, Sci. Rep. 7, 1762.   DOI
46 Kim, S. M., Hur, J. H., Han, D. S., Cho, J. M., & Kim, K. J., 2001. Diamondback moth (Plutella xylostella L.) resistance to organophosphorus and carbamate insecticides in Kangwon alpine vegetable croplands, Kor. Soc. Pestic. Sci. 5, 24-30.
47 Gutierrez, E. D., Wiggins, D., Fielding, B., & Gould, A. P. (2007). Specialized hepatocyte-like cells regulate Drosophila lipid metabolism, Nature 445, 275-280.   DOI
48 Kim, T. M., Underwood, N., & Inouye, B. D., 2013. Insect herbivores change the outcome of plant competition through both inter- and intraspecific processes, Ecology 94, 1753-1763.   DOI
49 Kriehuber, T., Rattei, T., Weinmaier, T., Bepperling, A., Haslbeck, M., & Buchner, J. (2010). Independent evolution of the core domain and its flanking sequences in small heat shock proteins, FASEB J. 24, 3633-3642.   DOI
50 Lavoie, J. N., Gingras-Breton, G., Tanguay, R. M., & Landry, J. (1993). Induction of Chinese hamster HSP27 gene expression in mouse cells confers resistance to heat shock. HSP27 stabilization of the microfilament organization, J. Biol. Chem. 268, 3420-3429.
51 Leal, M., & Gunderson, A. R. (2012). Rapid change in the thermal tolerance of a tropical lizard, Am Nat. 180, 815-822.   DOI
52 Lee, S. C., Cho, Y. S., Kim, D. I. (1993). Comparative study of toxicological methods and field resistance to insecticides in diamondback moth (Lepidoptera: Plutellidae), Kor. J. Appl. Entomol. 32, 323-329.
53 Lee, S. H., Kang, J. S., Min, J. S., Yoon, K. S., Strycharz, J. P., Johnson, R., Mittapalli, O., Margam, V. M., Sun, W., Li, H. M., Xie, J., Wu, J., Kirkness, E. F., Berenbaum, M. R., Pittendrigh, B. R., & Clark, J. M. (2010). Decreased detoxification genes and genome size make the human body louse an efficient model to study xenobiotic metabolism, Insect Mol. Biol. 19, 599-615.   DOI
54 Lemoine, N. P., & Burkepile, D. E. (2012). Temperatureinduced mismatches between consumption and metabolism reduce consumer fitness, Ecology 93, 2483-2489.   DOI
55 Lemoine, N. P., Drews, W. A., Burkepile, D. E., & Parker, J. D. (2013). Increased temperature alters feeding behavior of a generalist herbivore, Oikos 122, 1669-1678.   DOI
56 Li, X., Schuler, M. A., & Berenbaum, M. R. (2007). Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics, Annu. Rev. Entomol. 52,231-253.   DOI
57 Li, X., Zhu, B., Gao, X., & Liang, P. (2017). Over-expression of UDP-glycosyltransferase gene UGT2B17 is involved in chlorantraniliprole resistance in Plutella xylostella (L.), Pest Manag. Sci. 73, 1402-1409.   DOI
58 Maibeche-Coisne, M. L., Monti-Dedieu, S., Aragon, S., & Dayphin-Villemant, C. (2000). A new cytochrome P450 from Drosophila melanogaster, CYP4G15, expressed in the nervous system, Biochem. Biophys. Res. Commun. 273, 1132-1137.   DOI
59 Lindmark-Mansson, H., & Akesson, B. (2000). Antioxidative factors in milk, Br. J. Nutr. 84, 103-110.   DOI
60 Lumjuan, N., McCarroll, L., Prapanthadara, L. A., Hemingway, J., & Ranson, H. (2005). Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti, Insect Biochem. Mol. Biol. 35,861-871.   DOI
61 Mannervik, B. (1985). The isoenzymes of glutathione transferase, Adv. Enzymol. Relat, Areas Mol. Biol. 57, 357-417.
62 Metcalf, D. B., Asner, G. P., Martin, R. E., Espejo, J. E. S., Huasco, W. H., Amezquita, F. F. F., Carranza-Jimenez, L., Cabrera, D. F. G., Baca, L. D., Sinca, F., Quispe, L. P. H,, Taype, I. A., Mora, L. E., Davila, A. R., Solorzano, M. M., Vilca, B. L. P., Roman, J. M. L., Bustios, P. C. G., Revilla, N. S., Tupayachi, R., Girardin, C. A. J., Doughty, C. E., & Malhi, Y. (2014). Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. Ecol. Lett. 17, 324-332.   DOI
63 O'Connor, M. I. (2009). Warming strengthens an herbivore- plant interaction, Ecology 90, 388-398.   DOI
64 O'Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A., & Bruno, J. F. (2009). Warming and resource availability shift food web structure and metabolism, PLOS Biol. 7, e1000178.   DOI
65 Pan, Y., Tian, F., Wei, X., Wu, Y., Gao, X., Xi, J., & Shang, Q. (2018). Thiamethoxam resistance in Aphis gossypii Glover relies on multiple UDP-glucuronosyltransferases, Front. Physiol. 9, 322.   DOI