• Title/Summary/Keyword: Chip on chip technology

Search Result 1,636, Processing Time 0.025 seconds

CPU Technology and Future Semiconductor Industry (I) (CPU 기술과 미래 반도체 산업 (I))

  • Park, Sahnggi
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.2
    • /
    • pp.89-103
    • /
    • 2020
  • Knowledge of the technology, characteristics, and market trends of the latest CPUs used in smartphones, computers, and supercomputers and the research trends of leading US university experts gives an edge to policy-makers, business executives, large investors, etc. To this end, we describe three topics in detail at a level that can help educate the non-majors to the extent possible. Topic 1 comprises the design and manufacture of a CPU and the technology and trends of the smartphone SoC. Topic 2 comprises the technology and trends of the x86 CPU and supercomputer, and Topic 3 involves an optical network chip that has the potential to emerge as a major semiconductor chip. We also describe three techniques and experiments that can be used to implement the optical network chip.

CPU Technology and Future Semiconductor Industry (III) (CPU 기술과 미래 반도체 산업 (III))

  • Park, Sahnggi
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.2
    • /
    • pp.120-136
    • /
    • 2020
  • Knowledge of the technology, characteristics, and market trends of the latest CPUs used in smartphones, computers, and supercomputers and the research trends of leading US university experts gives an edge to policy-makers, business executives, large investors, etc. To this end, we describe three topics in detail at a level that can help educate the non-majors to the extent possible. Topic 1 comprises the design and manufacture of a CPU and the technology and trends of the smartphone SoC. Topic 2 comprises the technology and trends of the x86 CPU and supercomputer, and Topic 3 involves an optical network chip that has the potential to emerge as a major semiconductor chip. We also describe three techniques and experiments that can be used to implement the optical network chip.

CPU Technology and Future Semiconductor Industry (II) (CPU 기술과 미래 반도체 산업 (II))

  • Park, Sahnggi
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.2
    • /
    • pp.104-119
    • /
    • 2020
  • Knowledge of the technology, characteristics, and market trends of the latest CPUs used in smartphones, computers, and supercomputers and the research trends of leading US university experts gives an edge to policy-makers, business executives, large investors, etc. To this end, we describe three topics in detail at a level that can help educate the non-majors to the extent possible. Topic 1 comprises the design and manufacture of a CPU and the technology and trends of the smartphone SoC. Topic 2 comprises the technology and trends of the x86 CPU and supercomputer, and Topic 3 involves an optical network chip that has the potential to emerge as a major semiconductor chip. We also describe three techniques and experiments that can be used to implement the optical network chip.

A Study on Gene Detection using Non-labeling DNA

  • Choi Yong-Sung;Lee Kyung-Sup;Kwon Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.960-965
    • /
    • 2006
  • This research aims to develop the multiple channel electrochemical DNA chip using microfabrication technology. At first, we fabricated a high integration type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then target DNAs were hybridized and reacted. Cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. Therefore, it is able to detect a plural genes electrochemically after immobilization of a plural probe DNA and hybridization of non-labeling target DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

Low-power heterogeneous uncore architecture for future 3D chip-multiprocessors

  • Dorostkar, Aniseh;Asad, Arghavan;Fathy, Mahmood;Jahed-Motlagh, Mohammad Reza;Mohammadi, Farah
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.759-773
    • /
    • 2018
  • Uncore components such as on-chip memory systems and on-chip interconnects consume a large amount of energy in emerging embedded applications. Few studies have focused on next-generation analytical models for future chip-multiprocessors (CMPs) that simultaneously consider the impacts of the power consumption of core and uncore components. In this paper, we propose a convex-optimization approach to design heterogeneous uncore architectures for embedded CMPs. Our convex approach optimizes the number and placement of memory banks with different technologies on the memory layer. In parallel with hybrid memory architecting, optimizing the number and placement of through silicon vias as a viable solution in building three-dimensional (3D) CMPs is another important target of the proposed approach. Experimental results show that the proposed method outperforms 3D CMP designs with hybrid and traditional memory architectures in terms of both energy delay products (EDPs) and performance parameters. The proposed method improves the EDPs by an average of about 43% compared with SRAM design. In addition, it improves the throughput by about 7% compared with dynamic RAM (DRAM) design.

System-on-chip single event effect hardening design and validation using proton irradiation

  • Weitao Yang;Yang Li;Gang Guo;Chaohui He;Longsheng Wu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1015-1020
    • /
    • 2023
  • A multi-layer design is applied to mitigate single event effect (SEE) in a 28 nm System-on-Chip (SoC). It depends on asymmetric multiprocessing (AMP), redundancy and system watchdog. Irradiation tests utilized 70 and 90 MeV proton beams to examine its performance through comparative analysis. Via examining SEEs in on-chip memory (OCM), compared with the trial without applying the multi-layer design, the test results demonstrate that the adopted multi-layer design can effectively mitigate SEEs in the SoC.

Giga-Hertz-Level Electromagnetic Field Analysis for Equivalent Inductance Modeling of High-Performance SoC and SiP Designs

  • Yao Jason J.;Chang Keh-Jeng;Chuang Wei-Che;Wang, Jimmy S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.4
    • /
    • pp.255-261
    • /
    • 2005
  • With the advent of sub-90nm technologies, the system-on-chip (SoC) and system-in-package (SiP) are becoming the trend in delivering low-cost, low-power, and small-form-factor consumer electronic systems running at multiple GHz. The shortened transistor channel length reduces the transistor switching cycles to the range of several picoseconds, yet the time-of-flights of the critical on-chip and off-chip interconnects are in the range of 10 picoseconds for 1.5mm-long wires and 100 picoseconds for 15mm-long wires. Designers realize the bottleneck today often lies at chip-to-chip interconnects and the industry needs a good model to compute the inductance in these parts of circuits. In this paper we propose a new method for extracting accurate equivalent inductance circuit models for SPICE-level circuit simulations of system-on-chip (SoC) and system-in-package (SiP) designs. In our method, geometrical meshes are created and numerical methods are used to find the solutions for the electromagnetic fields over the fine meshes. In this way, multiple-GHz SoC and SiP designers can use accurate inductance modeling and interconnect optimization to achieve high yields.

A Programmable Compensation Circuit for System-on-Chip Application

  • Choi, Woo-Chang;Ryu, Jee-Youl
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.198-206
    • /
    • 2011
  • This paper presents a new programmable compensation circuit (PCC) for a System-on-Chip (SoC). The PCC is integrated with $0.18-{\mu}m$ BiCMOS SiGe technology. It consists of RF Design-for-Testability (DFT) circuit, Resistor Array Bank (RAB) and digital signal processor (DSP). To verify performance of the PCC we built a 5-GHz low noise amplifier (LNA) with an on-chip RAB using the same technology. Proposed circuit helps it to provide DC output voltages, hence, making the RF system chain automatic. It automatically adjusts performance of an LNA with the processor in the SoC when it goes out of the normal range of operation. The PCC also compensates abnormal operation due to the unusual PVT (Process, Voltage and Thermal) variations in RF circuits.

A novel reitna chip with simple wiring for edge extraction (가장자리 검출을 위한 상호연결을 가진 망막칩)

  • ;;;Masahiro Ohtani;Hiroo Yonezy
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.153-156
    • /
    • 2000
  • A novel silicon retina chip based on the information processing in the vertebrate retina was designed. The chip has a novel wiring structure in which all pixels are connected through the channel of MOS transistors, which simplifies a wiring structure compared with conventional resistive networks. The proposed structure minimizes the pixel area and certainly increases a fill factor since each pixel consists of only two photodiodes and three MOS transistors. It also enables the chip to operate over a wide range of light intensity by adjusting its conductance with the gate voltage. Simulation results with SPICE showed that the chip could extract the edge of input images successfully.

  • PDF

Design and Fabrication of Mold Insert for Injection Molding of Microfluidic tab-on-a-chip for Detection of Agglutination (응집반응 검출을 위한 미세 유체 Lab on a chip의 사출성형 금형 인서트의 디자인 및 제작)

  • Choi, Sung-Hwan;Kim, Dong-Sung;Kwon, Tai-Hun
    • Transactions of Materials Processing
    • /
    • v.15 no.9 s.90
    • /
    • pp.667-672
    • /
    • 2006
  • Agglutination is one of the most commonly employed reactions in clinical diagnosis. In this paper, we have designed and fabricated nickel mold insert for injection molding of a microfluidic lab-on-a-chip for the purpose of the efficient detection of agglutination. In the presented microfluidic lab-on-a-chip, two inlets for sample blood and reagent, flow guiding microchannels, improved serpentine laminating micromixer(ISLM) and reaction microwells are fully integrated. The ISLM, recently developed by our group, can highly improve mixing of the sample blood and reagent in the microchannel, thereby enhancing reaction of agglutinogens and agglutinins. The reaction microwell was designed to contain large volume of about $25{\mu}l$ of the mixture of sample blood and reagent. The result of agglutination in the reaction microwell could be determined by means of the level of the light transmission. To achieve the cost-effectiveness, the microfluidic lab-on-a-chip was realized by the injection molding of COC(cyclic olefin copolymer) and thermal bonding of two injection molded COC substrates. To define microfeatures in the microfluidic lab-on-a-chip precisely, the nickel mold inserts of lab-on-a-chip for the injection molding were fabricated by combining the UV photolithography with a negative photoresist SU-8 and the nickel electroplating process. The microfluidic lab-on-a-chip developed in this study could be applied to various clinical diagnosis based on agglutination.