• Title/Summary/Keyword: Chicken femur

Search Result 10, Processing Time 0.028 seconds

The experimental study on the distribution of radioactive phosphorus-32 to several organs in one-day and seven-days old chicks (초생추(初生雛)의 각(各) 장기(臟器)에 있어서 방사성(放射性) 린(燐)$(^{32}P)$의 흡수분포(吸收分布)에 관한 실험적 연구)

  • Chung, Y.C.;Lee, H.J.
    • Journal of Nutrition and Health
    • /
    • v.3 no.2
    • /
    • pp.101-106
    • /
    • 1970
  • Radioactive Phosphorus $(^{32}P)$ was administered intramuscularlly to the newly hatched chicken in the purpose of determination of the uptake and the distribution, as related to sex and hour differences of the several organs of the bodies. $2\;{\mu}\;of\;^{32}P$ was administered to each chick, and the distribution of 32P was observed in 1 hour and 24 hours after administration. In this experiment 80 heads of chicken were used(40 chicken were one day and 40 chicken were 7 days old) and the results obtained as follows: 1. The tissue showed an uptake rate of $^{32}P$ dose per 100 milligram of tissue in one day old chicken, with the following sequence: Males (1 hour): Femur. Liver. G., Muscle. Testis. Brain (24 hour): Femur, Testis, Gastrocnemius Muscle, Liver, Brain. Female(1 hour): Femur, Liver, Gastronemius Muscle, Ovary, Brain. (24 hour): Femur, Liver, Gastrocnemius Muscle, Ovary, Brain. 2. In 1 hour, the uptake rate of $^{32}P$ of the tissues showed significant difference between the male and the female except the gastrocnemius muscle and the brain in one day old group, but they were no significance except the testis and ovary after 24 hours. 3. The distribution of $^{32}P$ of the tissues exhibited higher in 1 hour than in 24 hours except the femur, the brain of the male and female, the brain and gastrocnemius muscle of the female in one day old group. 4. The tissue showed an uptake rate of $^{32}P$ dose per 100 miligram of tissue in 7days old chicken, with the following sequence: Male (1 hour): femur, liver, gastrocmenius muscle, testis, brain. (24 hour): femur, testis, gastrocmenius muscle, liver, brain. Female(1 hour): femur, liver, gastrocmenius muscle, ovary, brain. (24 hour): femur, ovary, liver, gastrocmenius muscle, brain. 5. The distribution of $^{32}P$ of the tissues showed no significant difference between the male and the female except the testis and ovary after 24 hours in 7 days old chicken group. 6. The distribution of $^{32}P$ the tissues exhibited higher in 1 hour in 24 hours except the femur, the brain of the male and the female, the brain and the ovary of the female in 7 days old chicken group.

  • PDF

The growth stage study on the femur and tibia of Korean native chicken after hatching (한국 재래닭의 부화 후 성장단계별 넙다리뼈와 정강뼈 성장에 관한 연구)

  • Tae, Hyun-Jin
    • Korean Journal of Veterinary Service
    • /
    • v.38 no.3
    • /
    • pp.181-188
    • /
    • 2015
  • Skeletal development of chicken has been widely discussed in industrial forums and various research reports. However, these studies were emphasis on the commercial chicken strains for improve egg and meat production whereas the skeletal quiet remains as a potential weak link related to facilitating in the physical support of heavier carcasses at ever younger ages. For that, the study of standardization of skeletal development is important but it was rarely reported in Korean native chicken (KNC). The study was investigated the skeletal characteristics of KNC for international standardization. We studied in KNC at 2, 14, 28, 42, 56, 70, 84, 98, 112, 126, 147, 168, 196, 224, 336 and 448 days after hatch (male and female, n=13 for each group). We measured the body weight (BW), and after sacrifice measured organs and remove muscle from femur & tibia and measured bone weight. Data were analyzed by ANOVA, Duncan test, correlation analysis and regression analysis of SAS 9.1. We analyzed the data of BW, femur & tibia and made growth curve also. The BW was significantly increased up to 147 days after hatch (male, $1,927.88{\pm}68.92g$; female, $1,456.00{\pm}50.11g$), and then increased gradually. At 336 days, these growth was stop (male, $2,467.00{\pm}42.84g$; female, $1,568.71{\pm}62.62g$). The growth of femur & tibia length and width was stop on 98~126 days after hatch. At 98 days, we measured the length and width of femur & tibia in male were $132.39{\pm}3.18mm$ & $25.98{\pm}0.59mm$ whereas in female at 112 days the length of femur & tibia was $116.40{\pm}1.55mm$ and at 126 days width was $21.41{\pm}0.38mm$. Our study suggests that the growth of male KNC was classified pre-puberty (0~98 days), puberty (98~336 days) and maturity (after 336 days), meanwhile female was shown similar trend however puberty period of KNC was 112 or 126 days after hatch.

A Study on the Distribution of P-32 in Chicken (초생추(初生雛)에 대(對)한 P-32의 분포(分布)에 관(關)한 연구(硏究))

  • Lim, Han-Young;Chung, Kyu-Hoi;Won, Pyong-Oh
    • Journal of radiological science and technology
    • /
    • v.4 no.1
    • /
    • pp.73-80
    • /
    • 1981
  • Radioactive phosphorus(P-32) was injected to the chicken in the purpose of determination of the uptake and distribution, as related to sex and hour differences of the various organs of the body. $2{\mu}Ci$ of P-32 were injected to each chicken and the distribution of P-32 was observed at 1 hr, 6 hrs, 12 hrs, 24 hrs and 48 hrs after injection. In this experiment 34 heads of chicken were used(30 chicken for P-32, 4 chicken for control group) and the results obtained as follows: 1. The uptake of P-32 per gram of various organ in g. mm, femur(1 hr), liver, femur, tibia(24 hrs) and tibia(48 hrs) exhibited higher in the male than the female. 2. The uptake of P-32 per gram of various organ in heart, kidney, ovary(1 hr), kidney, brain(24 hrs) and kidney(48 hrs)exhibited higher in the female than the male. 3. The uptake ratio of brain, spleen, g. mm and tibia were increased gradually by the 12 hrs after injection of P-32, but decreased in liver, heart and kidney by the 24 hrs. 4. The uptake ratio of the femur was increased gradually by the 24 hrs, but testis and ovary was increased after 24 hrs. 5. The organs showed an uptake of P-32 per gram of various organ, with the following sequence : femur, tibia, testis or ovary, spleen, liver, kidney, heart, g. mm and brain.

  • PDF

Immunohistochemical observations of proliferating cells in distal epiphyseal tissue of chicken femurs (닭의 대퇴부 골단조직의 세포증식에 대한 면역조직화학적 관찰)

  • Kwak, Soo-dong;Kim, Chong-sup;Kang, Chung-boo
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.2
    • /
    • pp.237-242
    • /
    • 1994
  • The present study was focussed to assess the proliferating cells in the distal epiphyseal tissue of the chicken femur by immunohistochemical staining methods. Four chickens were administrated intraperitoneally by twice consecutive injections, 1 day interval with bromodeoxyuridine(Brdur, 0.05 mg/gm BW/time), and then were killed by exsanguination of jugular vein at 2 hours after last injection. Samples were taken from femur distal epiphyseas of chicken. Labeling indexes(LI) were calculated as the ratio of the number of anti-Brdur monoclonal antibody-labeled cells in the each tissue layers from basal layer of the integument to bone marrow. The overall LI were found to be $13.90{\pm}3.44%$, $30.03{\pm}7.52%$, $16.00{\pm}9.41%$, $0.00{\pm}0.00%$ and $60.03{\pm}13.39%$ at basal layer of integument, perichordrium, reseving zone in cartilage, hypertrophic zone in cartilage and bone marrow respectively. LI in proliferating zone of cartilage were found to be $36.99{\pm}7.59%$, $32.83{\pm}5.38%$ and $22.02{\pm}6.27%$ at reserving zone side region, middle region, and hypertrophic zone side region respectively. The tissue layers with higher LI were odered as bone marrow, reserving zone side region in proliferating zone, middle region in proliferating zone, perichondrium, hypertrophic zone side region in proliferating zone. reserving zone of cartilage and basal layer of integument. These data indicate that the overall LI in the each tissue layer of distal epiphyseas of the chicken femur were concluded to be higher than that in another tissue of adult birds but hypertrophic zone of cartlage were appeared to be not proliferating cells.

  • PDF

Microstructure Analysis of Rabbit and Chicken Femurs by Light Microscopy and Transmission Electron Microscopy (광학현미경과 투과전자현미경을 이용한 토끼와 닭 대퇴골의 미세구조 분석)

  • Kim, Chang-Yeon;Kim, Eun-Kyung;Jeon, Tae-Hoon;Nam, Seung-Won;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.40 no.3
    • /
    • pp.155-162
    • /
    • 2010
  • Bone is a hierarchically structured composite material which has been well studied by the materials engineering community because of its unique structure and mechanical properties. Bone is a laminated organic-inorganic composite composed of primarily hydroxyapatite, collagen and water. The main mineral that gives bone's hardness is calcium phosphate, which is also known as hydroxyapatite. Light microscopy (LM) and transmission electron microscopy (TEM) were used to study the structure of femurs from chicken and rabbit. The elemental analysis was used to search variation in the distribution of calcium, potassium and oxygen in the femur. Current investigation focused on two structural scales: micro scale (arrangement of compact bone) and nano scale (collagen fibril and apatite crystals). At micro scale, distinct difference was found in microstructures of chicken femur and rabbit femur. At nano scale, we analyzed the shape and size of apatite crystals and the arrangement of collagen fibril. Consequently, femurs of chicken and rabbit had very similar chemical property and structures at nano scale despite of their different species.

Impact of litter on femur and tibial morphology, bone biomechanics, and leg health parameters in broiler chickens

  • Komal Khan;Mehmet Kaya;Evrim Dereli Fidan;Figen Sevil Kilimci
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1393-1402
    • /
    • 2023
  • Objective: In this study effects of three types of beddings on broiler leg health and bone biomechanics were evaluated. Methods: A total of 504 male chicks (Ross 308) were randomly placed on three beddings (4 replicates/group; 42 birds/pen), zeolite-added litter (ZL), plastic-grid flooring (PF), and wood shavings (WS). On day 42, chickens were weighed, slaughtered, and samples (bone, muscle, and drumstick) were collected. Bones were subjected to leg health tests, morphometric measurements, biomechanical testing, and ash analysis. Results: Broilers in PF and WS groups showed higher live weight than the ZL group (p<0.001), and the incidence of tibial dyschondroplasia (TD) and varus valgus deformity due to distal bending was significantly higher in PF (p<0.001). Multinomial logistic regression showed that bedding has a significant (p = 0.038) contribution toward the development of TD. Tibial strength (p = 0.040), drumstick width (p = 0.001), and total femur and epiphyseal ash contents (p = 0.044, 0.016) were higher in the ZL group. Chicken live weight was correlated with tibial length and weight (r = 0.762, 0.725). Conclusion: Flooring and the type of bedding material directly affect broiler bone length, strength and leg health. Plastic bedding improves the slaughter weight of chickens on the expense of leg deformities, and zeolite litter improves leg health and bone strength.

Study of the cartilage matrix production-promoting effect of chicken leg extract and identification of the active ingredient

  • Yamada, Hiroaki;Nakamura, Utano;Nakamura, Toshio;Uchida, Yoshikazu;Yamatsu, Atsushi;Kim, Mujo
    • Nutrition Research and Practice
    • /
    • v.13 no.6
    • /
    • pp.480-487
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Osteoarthritis (OA) is a major public health issue in Japan and other countries, and foods that prevent or treat OA are in strong demand. Proteins and peptides in chicken meat and bones are known for being rich in functional and nutritional ingredients for the improvement of osteoporosis. We speculated that chicken legs, a food consumed in many regions of the world, may also contain such ingredients. In this study, we aim to (i) evaluate the effect of chicken leg extract (CLE) on the promotion of cartilage matrix production and (ii) identify the active ingredient in CLE that contributes to this function. MATERIALS/METHODS: Artificial CLE digest was prepared, and the acid mucopolysaccharide production-promoting activity of the CLE digest was evaluated by alcian blue staining of ATDC5 cells. CLE was orally administered to rabbits with burr holes in the knee joint of the femur, and the degree of regeneration of cartilage matrix was evaluated. Furthermore, we investigated orally administered CLE-derived peptides in human plasma using LC-MS. From measuring the acid mucopolysaccharide production-promotion activity of these peptides, a molecule considered to be an active ingredient in the CLE digest was identified. RESULTS: CLE digest promoted acid mucopolysaccharide production and facilitated regeneration of cartilage matrix in in vitro and in vivo experiments. Four peptides including phenylalanyl-hydroxyproline (Phe-Hyp) were detected as CLE-derived peptides in human plasma. The effect of CLE was inferred to be due to Phe-Hyp, which was confirmed to be present in the CLE digest. CONCLUSIONS: It was shown that CLE stimulated the production of articular cartilage matrix both in vitro and in vivo, and that CLE could be an effective food for preventing or treating OA. Furthermore, only Phe-Hyp was confirmed as the active compound in the CLE digest, suggesting that the activity of CLE was due to Phe-Hyp.

Ultrastructural Studies of Effect of Monosodium Glutamate on the Epiphyseal Plate of Femur in Young Chicken (Monosodium Glutamate가 초생추 대퇴골 근위골단에 미치는 영향에 관한 투과 및 주사전자현미경적 연구)

  • Yang, Hong-Hyun;Lee, Heung-Shik;Lee, In-Se;Kim, Jin-Sang
    • Applied Microscopy
    • /
    • v.20 no.1
    • /
    • pp.90-104
    • /
    • 1990
  • This study was carried out to investigate the ultrastructural changes of the proximal epiphyseal plate of the femur in young chickens that had been treated with monosodium glutamate(MSG). Eighty 1-day old broiler chickens(Hubbard strain) were divided into control and experimental groups. The experimental group received daily administration of MSG(3mg/g of body weight in 0.75% saline) per orally for 1, 3, 6, 9, 12, 15, 18 and 21 days, and were sacrificed with exanguination. The control group received an equal volume of 0.75% saline. For the transmission electron microscopy, the prehypertrophic cartilage zone of epiphyseal plate was cleaved, fixed with 2% glutaraldehyde(containing 0.2% ruthenium red), postfixed with 1 % osmium tetroxide, embedded in Epon 812, and stained with uranyl acetate and lead citrate. For the scanning electron microscopy, the calcified zone of epiphyseal plate was cleaved and coated with gold palladium. The results obtained were as follows; 1. On transmission electron microscopic examination, the sacculation decreased from 12 day to 21 day MSG administrated groups, and the vesiculation decreased in 18 and 21 day MSG administrated groups in rough endoplasmic reticulum of chondrocytes in prehypertrophic cartilage zone. The ruthenium red binding particles in pericellular rim, territorial matrix and interterritorial matrix increased from 9 day to 21 day MSG administrated groups, but the crystalloid materials decreased. 2. On scanning electron microscopic examination, the trabecular formation and calcospherites of calcification zone decreased in 18 and 21 day MSG administrated groups. The resorption cavities widened from 15 day to 21 day MSG administrated groups.

  • PDF

Evaluation of Relative Bioavailability of 25-Hydroxycholecalciferol to Cholecalciferol for Broiler Chickens

  • Han, J.C.;Chen, G.H.;Wang, J.G.;Zhang, J.L.;Qu, H.X.;Zhang, C.M.;Yan, Y.F.;Cheng, Y.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1145-1151
    • /
    • 2016
  • This study was conducted to evaluate the relative bioavailability (RBV) of 25-hydroxycholecalciferol (25-OH-$D_3$) to cholecalciferol (vitamin $D_3$) in 1- to 21-d-old broiler chickens fed with calcium (Ca)- and phosphorus (P)-deficient diets. On the day of hatch, 450 female Ross 308 broiler chickens were assigned to nine treatments, with five replicates of ten birds each. The basal diet contained 0.50% Ca and 0.25% non-phytate phosphorus (NPP) and was not supplemented with vitamin D. Vitamin $D_3$ was fed at 0, 2.5, 5.0, 10.0, and $20.0{\mu}g/kg$, and 25-OH-$D_3$ was fed at 1.25, 2.5, 5.0, and $10.0{\mu}g/kg$. The RBV of 25-OH-$D_3$ was determined using vitamin $D_3$ as the standard source by the slope ratio method. Vitamin $D_3$ and 25-OH-$D_3$ intake was used as the independent variable for regression analysis. The linear relationships between the level of vitamin $D_3$ or 25-OH-$D_3$ and body weight gain (BWG) and the weight, length, ash weight, and the percentage of ash, Ca, and P in femur, tibia, and metatarsus of broiler chickens were observed. Using BWG as the criterion, the RBV value of 25-OH-$D_3$ to vitamin $D_3$ was 1.85. Using the mineralization of the femur, tibia, and metatarsus as criteria, the RBV of 25-OH-$D_3$ to vitamin $D_3$ ranged from 1.82 to 2.45, 1.86 to 2.52, and 1.65 to 2.05, respectively. These data indicate that 25-OH-$D_3$ is approximately 2.03 times as active as vitamin $D_3$ in promoting growth performance and bone mineralization in broiler chicken diets.

Intestinal segment and vitamin D3 concentration affect gene expression levels of calcium and phosphorus transporters in broiler chickens

  • Jincheng Han;Lihua Wu;Xianliang Lv;Mengyuan Liu;Yan Zhang;Lei He;Junfang Hao;Li Xi;Hongxia Qu;Chuanxin Shi;Zhiqiang Li;Zhixiang Wang;Fei Tang;Yingying Qiao
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.336-350
    • /
    • 2023
  • Two experiments were conducted in this research. Experiment 1 investigated the spatial expression characteristics of calcium (Ca) and phosphorus (P) transporters in the duodenum, jejunum, and ileum of 21-day-old broilers provided with adequate nutrient feed. Experiment 2 evaluated the effects of dietary vitamin D3 (VD3) concentration (0, 125, 250, 500, 1,000, and 2,000 IU/kg) on growth performance, bone development, and gene expression levels of intestinal Ca and P transporters in 1-21-day-old broilers provided with the negative control diet without supplemental VD3. Results in experiment 1 showed that the mRNA levels of calcium-binding protein 28-kDa (CaBP-D28k), sodium-calcium exchanger 1 (NCX1), plasma membrane calcium ATPase 1b (PMCA1b), and IIb sodium-phosphate cotransporter (NaPi-IIb) were the highest in the broiler duodenum. By contrast, the mRNA levels of inorganic phosphate transporter 1 (PiT-1) and 2 (PiT-2) were the highest in the ileum. Results in experiment 2 showed that adding 125 IU/kg VD3 increased body weight gain (BWG), feed intake (FI), bone weight, and percentage and weight of Ca and P in the tibia and femur of 1-21-day-old broilers compared with the negative control diet (p < 0.05). The rise in dietary VD3 levels from 125 to 1,000 IU/kg further increased the BWG, FI, and weights of the bone, ash, Ca, and P (p < 0.05). No difference in growth rate and leg bone quality was noted in the broilers provided with 1,000 and 2,000 IU/kg VD3 (p > 0.05). Supplementation with 125-2,000 IU/kg VD3 increased the mRNA abundances of intestinal Ca and P transporters to varying degrees. The mRNA level of CaBP-D28k increased by 536, 1,161, and 28 folds in the duodenum, jejunum, and ileum, respectively, after adding 1,000 IU/kg VD3. The mRNA levels of other Ca and P transporters (PMCA1b, NCX1, NaPi-IIb, PiT-1, and PiT-2) increased by 0.57-1.74 folds by adding 1,000-2,000 IU/kg VD3. These data suggest that intestinal Ca and P transporters are mainly expressed in the duodenum of broilers. Moreover, the addition of VD3 stimulates the two mineral transporter transcription in broiler intestines.