비중심 $\chi^2$분포의 누적분포 함수의 계산은 $\chi^2$검정에서 검정력 계산에 요구된다. 본 논문서는 중심 $\chi^2$분포 함수를 통하여 비중심 $\chi^2$분포 함수의 계산을 구하는 알고리즘을 제시하고 있으며 기존의 접근 방법에 의한 계산 결과와 비교하였다.
본 논문에서는 연속된 프레임들의 차이 값으로부터 획득된 평균과 표준편차를 이용한 새로운 자동 임계치-결정 알고리즘을 제안하였다. 먼저, 연속된 프레임사이의 차이 값들에 대한 계산은 기존의 컬러 히스토그램과 ${\chi}^2$-테스트를 병합한 변형된 ${\chi}^2$-테스트 알고리즘을 이용하였다. 변형된 ${\chi}^2$-테스트는 각 컬러공간에 명암도 등급에 따른 가중치를 적용하여 보다 세분화된 값들에 의한 장면전환 검출을 시도할 수 있는 장점이 있다. 제안된 자동 임계치 결정 알고리즘은 획득된 전체 차이값들의 분포로부터 1차 평균과 표준편차를 구한 후, 이를 다시 주어진 차이 값들에 적용하여 1차 평균을 만족하는 차이 값들로부터 2차 평균과 표준편차를 구하며, 이러한 연속적인 평균과 표준편차의 계산으로부터 표준편차가 최대지점으로부터 작아지는 시점의 평균을 기준으로 임계치를 결정하는 방법이다. 제안된 방법은 다양한 비디오 데이터에서 실험되었으며, 실험결과 자동 임계치 결정에 효율적이며, 신뢰할만한 장면들을 검출하였다.
본 논문은 지금까지 미해결 문제로 알려진 정점 색칠 문제에 대한 Hadwiger 추측의 반증을 제시하였다. Hadwiger 추측은 "모든 $K_k$-minor free 그래프는 k-1개의 색으로 칠할 수 있다. 즉, $K_k$-마이너를 얻으면 ${\chi}(G)=k$이다." Hadwiger 추측을 적용하여 정점 색칠을 할 경우, 먼저 NP-완전 (NP-complete)인 $K_k$-마이너를 구하여 ${\chi}(G)=k$를 결정하고, 다시 NP-완전인 정점 색칠 문제를 풀어야 한다. Hadwiger 추측을 반증하기 위해 본 논문은 정점 색칠의 정확한 해를 O(V)의 선형시간으로 구하는 알고리즘을 제시하였다. 제안된 알고리즘은 그래프의 최소 차수를 가진 정점을 최대독립집합 (MIS)으로 하고, MIS 정점의 인접 정점 간선을 삭제한 축소된 그래프에 대해 이 과정을 반복하면서 하나의 색을 가진 MIS를 얻는다. 다음으로 MIS 정점의 간선을 삭제한 축소된 그래프에 대해 동일한 과정을 수행하여 MIS의 개수가 정점 채색수 ${\chi}(G)=k$가 되는 해를 얻는다. 제안된 알고리즘을 적용하여 NP-완전 문제인 완전 색칠 (total coloring) 채색수 ${\chi}^{{\prime}{\prime}}(G)$의 해를 구하는 알고리즘을 제안하였다. 제안된 알고리즘을 $K_4$-마이너 그래프에 적용한 결과 ${\chi}(G)=4$가 아닌 ${\chi}(G)=3$을 얻었다. 결국, Hadwiger 추측은 모든 그래프에 대해 적용되지 않음을 알 수 있다. 제안된 알고리즘은 마이너를 구하지 않으며, 주어진 그래프에 대해 직접 ${\chi}(G)=k$인 독립집합 마이너를 구하여 각 독립집합 정점들에 동일한 색을 배정하는 단순한 방법이다.
본 논문은 평면상의 거리가 1인 인접 정점들에 대해 서로 다른 색을 칠할 경우 최대로 필요한 색인 채색수를 찾는 문제를 연구하였다. 지금까지 채색수 상한 값은 $4{\leq}{\chi}(G){\leq}7$로 알려져 있으며, Hadwiger-Nelson은 ${\chi}(G){\leq}7$, Soifer는 ${\chi}(G){\leq}9$를 제안하였다. 먼저, 최소로 필요로 하는 채색수를 구하는 알고리즘을 제안하고, Hadwiger-Nelson의 정육각형 그래프를 대상으로 채색수를 구한 결과 ${\chi}(G)=3$이 될 수 있음을 보였다. Hadwiger-Nelson의 정육각형 그래프를 12개 인접 정점으로 가정할 경우 ${\chi}(G)=4$를 구하였다. 또한, Soifer의 8개 인접 정점 정사각형 그래프에 대해 채색수를 구한 결과 ${\chi}(G)=4$임을 보였다. 결국, 제안된 알고리즘은 최소 차수 정점부터 색을 배정하는 단순한 다항시간 규칙을 적용하여 평면의 최대 채색수는 ${\chi}(G)=4$임을 제안한다.
A modified discretization ABS algorithm for solving a class of singular nonlinear systems, F($\chi$)=0, where $\chi$, F $\in$$R^n$, is presented, constructed by combining a discretization ABS algorithm arid a method of Hoy and Schwetlick (1990). The second order differential operation of F at a point is not required to be calculated directly in this algorithm. Q-quadratic convergence of this algorithm is given.
항공 라이다로부터 획득한 대용량의 3차원 점 데이터로부터 대상 물체의 윤곽정보를 추출하는 것은 데이터 처리 과정에서 필수적이며 기반적인 기술 중의 하나이다. 특히 인공 구조물인 건물은 복잡한 현대 도시를 구성하는 주요 구조물이며 그 형태가 명확하기에 윤곽 정보의 추출 과정이 더욱 중요하다 할 수 있다. 본 연구에서는 항공 라이다를 이용하여 얻어진 건물을 구성하는 3차원 점 데이터로부터 건물의 윤곽정보를 추출하기 위하여 점 데이터의 기하정보만을 이용한 확장 카이(${\chi}$-Chi) 알고리즘을 제안한다. 제안된 알고리즘은 임의의 점군을 델로니(Delaunay) 삼각망으로 구성하고 특정 조건을 만족하는 변(edge)를 제거하는 과정을 통하여 구현된다. 덧붙여, 전체적인 추출과정의 효율화를 위해서 델로니 삼각망의 구성을 스윕헐 알고리즘을 적용하여 수행하였다. 본 연구에서 제안하는 확장 카이 알고리즘의 성능을 확인하기 위하여 본 연구와 같은 목적으로 개발된 인케이싱 폴리곤 제작 알고리즘과 알파 쉐이프 알고리즘을 비교하였고 기 제작된 건물의 도화정보를 이용하여 윤곽정보 추출의 정확도를 비교하였다. 실험결과, 본 연구에서 제안한 알고리즘은 기존의 알고리즘들보다 윤곽정보 추출 속도 및 정확도가 향상됨을 확인하였다.
본 논문은 NP-완전 문제인 간선 색칠과 그래프 부류 결정 문제를 동시에 해결하는 O(E)의 다항시간 알고리즘을 제안하였다. 제안된 알고리즘은 최대차수-최소차수 정점 쌍 간선을 단순히 선택하는 방법으로 간선 채색수 ${\chi}^{\prime}(G)$를 결정하였다. 결정된 ${\chi}^{\prime}(G)$는 ${\Delta}(G)$ 또는 ${\Delta}(G)+1$을 얻는다. 결국, 알고리즘 수행 결과 얻은 ${\chi}^{\prime}(G)$로부터 ${\chi}^{\prime}(G)={\Delta}(G)$이면 부류 1, ${\chi}^{\prime}(G)={\Delta}(G)+1$이면 부류 2로 분류할 수 있다. 또한, 미해결 문제로 알려진 "최대차수가 6인 단순, 평면 그래프는 부류 1이다."라는 Vizing의 평면 그래프 추정도 증명하였다.
Recently, Mining negative association rules has received some attention and proved to be useful. Negative association rules are useful in market-basket analysis to identify products that conflict with each other or products that complement each other. Several algorithms have been proposed. However, there are some questions with those algorithms, for example, misleading rules will occur when the positive and negative rules are mined simultaneously. The chi-squared test that based on the mature theory and Correlation Coefficient can avoid the problem. In this paper, We proposed the algorithm PNCCR based on chi-squared test and correlation is proposed. The experiment results show that the misleading rules are pruned. It suggests that the algorithm is correct and efficient.
본 논문에서는 비디오 시퀀스의 자동분류를 지원하기 위한 기반기술로서, 변형된 $\chi^2$-테스트와 자동 임계치-결정 알고리즘을 이용한 장면전환 검출 기법을 제안하였다. 변형된 $\chi^2$-테스트는 기존의 컬러 히스토그램에서 컬러의 각 채널공간(RGB)에 NTSC표준에 따른 명암도 등급을 따로 계산하여 채널의 차이 값을 보다 세분화 할 수 있으며, 인접한 두 프레임사이의 상대적인 컬러 값의 차이를 강조하는$\chi^2$- 테스트를 결합하여 보다 강건한 장면전환 곁출을 시도하고 있다. 자동 임계치-결정 알고리즘은 변형된 $\chi^2$-테스트를 통하여 획득된 인접한 프레임들 사이의 차이 값들을 이용한다. 먼저, 차이 값들에 대한 전체 평균값을 계산한 후, 이 평균값을 만족하는 차이 값들만을 이용하여 다시 평균값을 계산하며, 이러한 평균값의 연속적인 계산 및 누적을 통하여 분산된 차이 값들로부터 가장 최적의 중간 평균값을 취하여 임계치로 설정하는 방법이다. 실험결과 제안된 장면전환 검출 방법과 자동 임계치-결정 알고리즘은 기존의 접근방법보다 효과적이며, 그 우수성을 보여주었다.
This paper propose the inference mechanism for handling linear polynomial constraints called consistency checking algorithm based on the feasibility checking algorithm borrowed from linear pro-gramming. in contrast with other approaches proposed algorithm can efficiently and coherented by linear polynomial forms. The developed algorithm is successfully applied to the symbolic simulation that offers a convenient means to conduct multiple simultaneous exploration of model behaviors.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.