DOI QR코드

DOI QR Code

Disproof of Hadwiger Conjecture

Hadwiger 추측의 반증

  • Lee, Sang-Un (Dept. of Multimedia Eng., Gangneung-Wonju National University)
  • 이상운 (강릉원주대학교 과학기술대학 멀티미디어공학과)
  • Received : 2014.06.14
  • Accepted : 2014.10.10
  • Published : 2014.10.31

Abstract

In this paper, I disprove Hadwiger conjecture of the vertex coloring problem, which asserts that "All $K_k$-minor free graphs can be colored with k-1 number of colors, i.e., ${\chi}(G)=k$ given $K_k$-minor." Pursuant to Hadwiger conjecture, one shall obtain an NP-complete k-minor to determine ${\chi}(G)=k$, and solve another NP-complete vertex coloring problem as a means to color vertices. In order to disprove Hadwiger conjecture in this paper, I propose an algorithm of linear time complexity O(V) that yields the exact solution to the vertex coloring problem. The proposed algorithm assigns vertex with the minimum degree to the Maximum Independent Set (MIS) and repeats this process on a simplified graph derived by deleting adjacent edges to the MIS vertex so as to finally obtain an MIS with a single color. Next, it repeats the process on a simplified graph derived by deleting edges of the MIS vertex to obtain an MIS whose number of vertex color corresponds to ${\chi}(G)=k$. Also presented in this paper using the proposed algorithm is an additional algorithm that searches solution of ${\chi}^{{\prime}{\prime}}(G)$, the total chromatic number, which also remains NP-complete. When applied to a $K_4$-minor graph, the proposed algorithm has obtained ${\chi}(G)=3$ instead of ${\chi}(G)=4$, proving that the Hadwiger conjecture is not universally applicable to all the graphs. The proposed algorithm, however, is a simple algorithm that directly obtains an independent set minor of ${\chi}(G)=k$ to assign an equal color to the vertices of each independent set without having to determine minors in the first place.

본 논문은 지금까지 미해결 문제로 알려진 정점 색칠 문제에 대한 Hadwiger 추측의 반증을 제시하였다. Hadwiger 추측은 "모든 $K_k$-minor free 그래프는 k-1개의 색으로 칠할 수 있다. 즉, $K_k$-마이너를 얻으면 ${\chi}(G)=k$이다." Hadwiger 추측을 적용하여 정점 색칠을 할 경우, 먼저 NP-완전 (NP-complete)인 $K_k$-마이너를 구하여 ${\chi}(G)=k$를 결정하고, 다시 NP-완전인 정점 색칠 문제를 풀어야 한다. Hadwiger 추측을 반증하기 위해 본 논문은 정점 색칠의 정확한 해를 O(V)의 선형시간으로 구하는 알고리즘을 제시하였다. 제안된 알고리즘은 그래프의 최소 차수를 가진 정점을 최대독립집합 (MIS)으로 하고, MIS 정점의 인접 정점 간선을 삭제한 축소된 그래프에 대해 이 과정을 반복하면서 하나의 색을 가진 MIS를 얻는다. 다음으로 MIS 정점의 간선을 삭제한 축소된 그래프에 대해 동일한 과정을 수행하여 MIS의 개수가 정점 채색수 ${\chi}(G)=k$가 되는 해를 얻는다. 제안된 알고리즘을 적용하여 NP-완전 문제인 완전 색칠 (total coloring) 채색수 ${\chi}^{{\prime}{\prime}}(G)$의 해를 구하는 알고리즘을 제안하였다. 제안된 알고리즘을 $K_4$-마이너 그래프에 적용한 결과 ${\chi}(G)=4$가 아닌 ${\chi}(G)=3$을 얻었다. 결국, Hadwiger 추측은 모든 그래프에 대해 적용되지 않음을 알 수 있다. 제안된 알고리즘은 마이너를 구하지 않으며, 주어진 그래프에 대해 직접 ${\chi}(G)=k$인 독립집합 마이너를 구하여 각 독립집합 정점들에 동일한 색을 배정하는 단순한 방법이다.

Keywords

References

  1. Wikipedia, "Graph Coloring," http://en.wikipedia.org/wiki/Graph_Coloring, Wikimedia Foundation Inc., 2014.
  2. Wikipedia, "Edge Coloring," http://en.wikipedia.org/wiki/Edge_coloring, Wikimedia Foundation Inc., 2014.
  3. Wikipedia, "Total Coloring," http://en.wikipedia.org/wiki/Total_coloring, Wikimedia Foundation Inc., 2014.
  4. Wikipedia, "Four Color Theorem," http://en.wikipedia.org/wiki/Four_color_theorem, Wikimedia Foundation Inc., 2014.
  5. B. Mohar, "What is a Graph Minor," Notices of the AMS, Vol. 53, No. 3, pp. 338-339, 2006.
  6. Wikipedia, "Hadwiger Conjecture (Graph Theory)," http://en.wikipedia.org/wiki/Hadwiger_conjecture(graph_theory), Wikimedia Foundation Inc., 2014.
  7. R. Naserasr and Y. Nigussie, "On a new Reformulation of Hadwiger Conjecture," Journal of Discrete Mathematics, Vol. 306, No. 23. pp. 3136-3139, Dec. 2006. https://doi.org/10.1016/j.disc.2005.06.043
  8. M. O. Albertson and J. P. Hutchinson, "Graph Color Extensions: When Hadwiger's Conjecture and Embeddings Help," The Electronic Journal of Combinatorics, Vol. 9, No. 1, pp. 1-10, Jan. 2002.
  9. T. J. Hetherington and D. R. Woodall, "Edge and Total Choosability of Near-outerplanar Graphs," The Electronic Journal of Combinatorics, Vol. 13, No. 1, pp. 1-7, Jan. 2006.
  10. G. Istrate, "On Hadwiger's Number of a Graph with Partial Information," Applied Mathematics Letters, Vol. Vol. 22, No. 2, pp. 1-7, Feb. 2009. https://doi.org/10.1016/j.aml.2007.05.012
  11. B. Reed and R. Thomas, "Clique Minors in Graphs and Their Complements," Journal of Combinatorial Theory Series B., Vol. 78, No. 1, pp. 81-85, Jan. 2000. https://doi.org/10.1006/jctb.1999.1930
  12. Ed. Pegg, Jr, "Graph Minor," http://mathworld.wolfram.com/Graph Minor.html, 2009.
  13. Wikipedia, "Minor," http://en.wikipedia.org/wiki/Minor, Wikimedia Foundation Inc., 2014.
  14. Wikipedia, "Independent Set Problem," http://en.wikipedia.org/wiki/Independent_set_problem, Wikimedia Foundation Inc., 2014.
  15. Wikipedia, "Vertex Cover," http://en.wikipedia.org/wiki/Vertex_cover, Wikimedia Foundation Inc., 2014.
  16. Wikipedia, "Degree (Graph Theory)," http://en.wikipedia.org/wiki/Degree_(graph-theory), Wikimedia Foundation Inc., 2014.