DOI QR코드

DOI QR Code

An Effective Algorithm for the Noncentral Chi-Squared Distribution Function

비중심카이제곱분포 함수에 대한 효율적인 알고리즘

  • Published : 2002.06.01

Abstract

The evaluation of the cumulative distribution function of the noncentral $\chi^2$ distribution is required in approximate determination of the power of the $\chi^2$ test. This article provides an algorithm for evaluating the noncentral $\chi^2$ distribution function in terms of a single "central" $\chi^2$ distribution function and compared various approximations.ximations.

비중심 $\chi^2$분포의 누적분포 함수의 계산은 $\chi^2$검정에서 검정력 계산에 요구된다. 본 논문서는 중심 $\chi^2$분포 함수를 통하여 비중심 $\chi^2$분포 함수의 계산을 구하는 알고리즘을 제시하고 있으며 기존의 접근 방법에 의한 계산 결과와 비교하였다.

Keywords

References

  1. A. I. Abdel-Samad and S. K. Ashour, 'On the computation of non-central chi-square distribution function,' Communications in Statistics, Simulation and Computation, Vol.19(4), pp.1279-1291, 1990 https://doi.org/10.1080/03610919008812916
  2. P. J. Bickel and K. A. Doksum, 'Mathematical Statistics : Basic ideas and selected topics,' San Francisco : Holden Day, 1977
  3. T. J. Boardman and R. W. Kopitzke, 'Probability and table values for statistical distributions,' Proceedings of the Statistical Computing Section, American Statistical Association, pp.81-86, 1975
  4. R. A. Fisher, 'The general sampling distribution of the multiple correlation coefficient,' Proceedings of Royal Society of London, Vol.121A, pp.654-673, 1928
  5. W. C. Guenther, 'Another derivation of the non-central chi-square distribution,' Journal of the American Statistical Association, Vol.59, pp.957-960, 1964 https://doi.org/10.2307/2283113
  6. N. L. Johnson, 'On an extention of the connection between Poisson and $x^2$ distributions,' Biometrika, Vol.46, pp.352-363, 1959
  7. N. L. Johnson and S. Kotz, 'Continuous Univariate Distributions,' Boston: Houghton Mifflin, 1970
  8. K. S. Miller and R. I. Bernstein and L. E. Blumenson, 'Generalized Rayleigh Process,' Quarterly of Applied Mathematics, Vol.16, pp.137-145, 1958 https://doi.org/10.1090/qam/94862
  9. J. H. Park, 'Moments of the generalized Rayleigh distribution,' Quarterly of Applied Mathematics, Vol.19, pp.45-49, 1961 https://doi.org/10.1090/qam/119222
  10. P. B. Patnaik, 'The non-central $x^2$ and F-distribution and their applications,' Biometrika, Vol.36, pp.303-332, 1949
  11. H. O. Posten, 'Computer algorithm for the classical distribution functions,' in Proceedings for the First International Conference on the Teaching of Statistics, Sheffield, U.K. : University of Sheffield Printing Unit, pp.313-330, 1982
  12. B. L. Shea, 'Chi-squared and incomplete Gamma integral,' Applied Statistics, Statistical Algorithms, Vol.37, pp.466-473, 1988 https://doi.org/10.2307/2347328
  13. H. R. Vaart, 'A note on the derivation of the non-central chi-square density function,' Statistica Neerlandica, Vol.21, pp.99-100, 1967 https://doi.org/10.1111/j.1467-9574.1967.tb00549.x