• Title/Summary/Keyword: Chemical treatments

Search Result 1,893, Processing Time 0.031 seconds

Growth, Hay Yield and Chemical Composition of Cassava and Stylo 184 Grown under Intercropping

  • Kiyothong, K.;Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.6
    • /
    • pp.799-807
    • /
    • 2004
  • The objective of this field experiment was to investigate the growth, hay yield and chemical composition of cassava and stylo 184 grown under intercropping. The experiment was arranged in a Randomized Complete Block (RCB) design with 5 treatments and 4 replications. The treatments were: sole crop cassava (C); sole crop stylo 184 (S) and three intercropping treatments comprising an additive series of one (SC), two (SSC) and three (SSSC) rows of stylo 184 to one row of cassava. The results showed that leaf area per plant (LA) of cassava was significantly higher (p<0.05) in the sole crop relative to the intercropping treatments. Both total hay yield and CPDM yield were significantly higher (p<0.05) for C treatment and lower (p<0.05) for SSSC treatment. The total hay yield and CPDM yield were significantly greater (p<0.05) in the sole crop relative to the intercropping treatments. At the first and second harvests, CP content was similar among treatments; while at third and fourth harvests, CP contents were significantly greater (p<0.05) for the intercropping treatment relative to the sole crop. At the first and second harvest, NDF contents were significantly greater (p<0.05) in the sole crop relative to the intercropping treatments, whereas NDF contents were similar among intercropping treatments. Leaf area of stylo 184 at first and second harvest were significantly greater (p<0.05) for C, SC and SSC as compared with the SSSC treatments. At each harvesting, there were no significant differences in ash, CP, NDF, ADF and ADL contents of stylo 184 hay between the sole crop and intercropping treatments, except for the first harvest. ADF contents were significantly greater (p<0.05) in S, SC treatments relative to SSC and SSSC treatments. Both collective hay yield and CPDM yield of cassava and stylo 184 were significantly greater (p<0.05) for the SSC treatment and significantly lower (p<0.05) for the S treatment. Collective hay yield and CPDM yield were significantly greater (p<0.05) for the intercropping treatments relative to the sole crop. Based on this research, it was concluded that stylo 184 showed potential for intercropping with cassava. Intercropping cassava with stylo 184 has beneficial effects and can improve foliage biomass yield and soil fertility, which would be a more sustainable system than growing the cassava as a pure stand. In terms of hay yield and CP production, two rows of stylo 184 to one row of cassava could be the optimal pattern for this intercropping system.

Long-term Effects of Chemical Fertilizer and Compost Applications on Yield of Red Pepper and Soil Chemical Properties

  • Park, Young-Eun;Lim, Tae-Jun;Park, Jin-Myeon;Lee, Seong-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.2
    • /
    • pp.111-118
    • /
    • 2018
  • A field experiment was conducted to investigate the effect of long-term (21-year) fertilizer and compost treatments on the yield of red pepper and chemical properties in top-dong, Suwon. Six treatments were chosen for this work: No fertilization (No fert.), NPK fertilizers (NPK), NPK and compost (NPK+Compost), NP and compost (NP+Compost), NK and compost (NK+Compost), PK and compost (PK+Compost). The yield of red pepper for 21 years indicated the significant differences among the No fertilization, the PK+Compost, and other treatments. The relative yield index was 13% and 59% respectively, for the No fertilization and the PK+Compost if the average yield of red pepper for the NPK regards $20,048kg\;ha^{-1}$ as the yield index with 100%. Soil organic matter at the compost applied treatments significantly increased compared with the No fert. and the NPK. The average increase rates of soil organic matter by applying the compost ranged from 0.69 to $0.73g\;kg^{-1}\;yr^{-1}$. Available phosphate content in soil appeared the significant increase all treatments excluding the No fert. It is estimated that the available phosphate in soil was increased by $7.0mg\;kg^{-1}\;yr^{-1}$ by applying compost and $14.2mg\;kg^{-1}\;yr^{-1}$ by applying P fertilizer. Application of K fertilizer or the compost alone, the NPK, the NP+Compost, continuously caused soil K depletion whereas K fertilization plus the compost maintained at a constant level of exchangeable K. The results indicated that the addition of compost to NPK fertilizer is recommended for the maximum stable yield for red pepper and enhancement of organic matter though it is also needed for adjusting of P and K fertilization.

The Minimum Concentrations of Surfactants Inducing Phytotoxicity and Their Symptoms (계면활성제(界面活性劑)의 약해유발농도(藥害誘發濃度)와 그 증상(症狀))

  • Yu, Ju-Hyun;Koo, Suk-Jin;Cho, Kwang-Yun
    • Korean Journal of Environmental Agriculture
    • /
    • v.8 no.2
    • /
    • pp.119-127
    • /
    • 1989
  • The minimum concentrations of nonionic and anionic surfactants inducing phytotoxicity were investigated after spraying or flooding surfactant solutions to annual plants. Of the sufactants tested, LE, NP, SPSS, LN, PAAS and DBC induced phytotoxicity at the lowest concentrations through all treatments and Tween, Span, SP, SC, STPP and CLIS induced the least phytotoxicity even at high concentration. At flooded paddy field tests, anionic surfactants induced phytotoxicity at the lower concentration than nonionic, but showed similar tendencies with other treatments. In pre-emergence treatments of upland and dry paddy field tests, there was little phytotoxicity induced at over 10 percent, while phytotoxicity was induced at the lowest concentration among 6 treatments in flooded paddy field tests.

  • PDF

Effects of Dietary Oriental Medicine Refuse and Mugwort Powder on Physico-Chemical Properties of Korean Native Pork (한약부산물과 쑥 분말 급여가 재래종 돈육의 이화학적 특성에 미치는 영향)

  • 김병기;강삼순;김영직
    • Food Science of Animal Resources
    • /
    • v.21 no.3
    • /
    • pp.208-214
    • /
    • 2001
  • This study was conducted to investigate the influence of dietary oriental medicine refuse(OMR) and mugwort powder on physico-chemical characteristics of Korean Native Pork(KNP). KNP were randomly assigned to one of the three dietary treatments : 1) control (commercial feed) 2) T1 (commercial fed supplemented with 10% OMR powder) 3) T2 (commercial feed with 10% mugwort powder). 15 heads(♂) were feed one of the experimental diets for 5 months and slaughtered. In the proximate composition, moisture content showed slightly high in the T1, however, fat content were tended to be high in the control. The heating loss, shear value, WHC (water holding capacity) were not significantly between control and the treatments group. The T1 showed the lowest pH among treatments (P<0.05). In sensory evaluation, juiciness and tenderness of T1 and T2 were higher compared with that of control. Hunter a* did not show any difference among the treatments group. But Hunter L*, b* in treatment group(T1, T2) were higher than that of the control. Oleic acid, linoleic acid and unsaturated fatty acid contents of T1 and T2 were higher than the control. The total amino acid of the control, T1 and T2 were 18.290, 18.177 and 18.942mg%, respectively.

  • PDF

Interfacial Material Engineering for Enhancing Triboelectric Nanogenerators

  • Nguyen, Dinh Cong;Choi, Dukhyun
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.218-227
    • /
    • 2022
  • Triboelectric nanogenerators (TENGs), a new green energy, that have various potential applications, such as energy harvesters and self-powered sensors. The output performance of TENGs has been improving rapidly, and their output power significantly increased since they were first reported owing to improved triboelectrification materials and interfacial material engineering. Because the operation of a TENG is based on contact electrification in which electric charges are exchanged at the interface between two materials, its output can be increased by increasing the contact area and charge density. Material surface modification with microstructures or nanostructures has increased the output performance of TENGs significantly because not only does the sharp micro/nano morphology increases the contact area during friction, but it also increases the charge density. Chemical treatment in which ions or functional groups are added has also been used to improve the performance of TENGS by modifying the work functions, charge densities, and dielectric constants of the triboelectric materials. In addition, ultrahigh output power from TENGs without using new materials or treatments has been obtained in many studies in which special structures were designed to control the current release or to collect the charge current directly. In this review, we discuss physical and chemical treatments, bulk modifications, and interfacial engineering for enhancing TENG performance by improving contact electrification and electrostatic induction.

Effects of Biofertilizer Rate and Application Time on Growth Characters and Grain Quality of Rice

  • Mintah, Lemuel Ohemeng;Rico, Cyren Mendoza;Shin, Dong-Il;Chung, Il-Kyung;Son, Tae-Kwon;Lee, Sang-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.4
    • /
    • pp.403-410
    • /
    • 2007
  • A field experiment was conducted to investigate effects of application time and rate of biofertilizer alone and in combination with chemical NPK fertilizer on growth, yield and quality of rice. The biofertilizer used composted food waste as substrate and added with effective microorganism. The treatments included recommended NPK fertilizer(RF, $11-5.5-4.8kg\;10a^{-1}$), half recommended NPK fertilizer(HRF, $5.5-2.8-2.4kg\;10a^{-1}$), half recommended NPK fertilizer plus $250kg\;10a^{-1}$ biofertilizer(HRF+Bio 250) and $500kg\;10a^{-1}$ biofertilizer(HRF+Bio 500). The biofertilizer treatments were applied at 0, 5 and 10 days before transplanting(DBT). Grain yield of HRF+Bio 250 at 5 DBT($648.4kg\;10a^{-1}$) was statistically similar to the highest obtained in the RF($654.1kg\;10a^{-1}$). Tiller numbers at HRF plus biofertilizer treatments were already high during the maximum tillering stage, and were similar with that of the RF and higher than that of the HRF during heading stage. Likewise, ripening ratio at HRF plus biofertilizer treatments was similar with that of the RF and higher than that of the HRF. Furthermore, all the biofertilizer treatments improved protein content but reduced the amylose content and palatability compared to treatments with chemical NPK fertilizer alone. Thus, HRF+Bio 250 at 5 DBT can be used to save 50% chemical NPK fertilizer and at the same time obtain an improved rice grain yield and quality.

Effects of Mild Heat and Organic Acid Treatments on the Quality of 'Daebo' Peeled Chestnut during Storage (열수 및 유기산 처리가 '대보' 박피밤의 저장 시 품질에 미치는 영향)

  • Oh, Sung-Il;Kim, Mahn-Jo
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.1
    • /
    • pp.84-89
    • /
    • 2015
  • The effects of dip treatments of chemicals (ascorbic acid, citric acid, calcium chloride: 1% solution) and physicals (vacuum packing, $50^{\circ}C$ distilled water) on the browning and quality of 'Daebo' peeled chestnut were studied. During the storage, the surface color of the samples showed higher ${\Delta}E$ values and lower L values than that of the initial sample. The color with the normal packing treatment hardly changed, unlike in the chemical and physical treatments. The calcium chloride treatment showed less color change than other treatments. The marketable quality was maintained for 10 days with the normal packing and for 35 days with the chemical and physical treatments. Thus, the chemical and physical treatments, especially with vacuum packing after 1% calcium chloride treatment, extended the shelf-life of the 'Daebo' peeled chestnut by inhibiting the browning.

Short-Term Fertilization with Hairy Vetch, Compost and Chemical Fertilizer Affect Red Pepper Yield and Quality and Soil Properties

  • Selvakumar, Gopal;Yi, Pyoung Ho;Lee, Seong Eun;Han, Seung Gab
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • BACKGROUND: The use of green manure and compost as organic fertilizer may increase crop yield and soil fertility due to improved soil nutrient availability and soil organic matter content (SOM). This study aimed to investigate the effects of hairy vetch (Vicia villosa L.) and compost application on red pepper growth, yield, fruit quality and soil health. METHODS AND RESULTS: The treatments were no fertilizer (CON), chemical fertilizer (CF), hairy vetch (HV), and livestock compost+HV (LC+HV). Red pepper seedlings (70 days old) were transplanted and maintained in experimental plots for 140 days. Plant dry weight, micro- and macronutrient contents of plants and soil chemical properties were determined. All fertilizer treatments significantly increased plant dry weight. Fruit yield was significantly highest with HV treatment. As for nutrient content, plants in HV and LC+HV treatments have significantly higher K and Ca contents than the other treatments. Regarding soil properties, HV and LC+HV application significantly altered the soil chemical properties. Significantly higher SOM was observed in HV and LC+HV treated soils. CONCLUSION: The results of this study suggest that short-term application of hairy vetch and compost is an effective alternative to the conventional chemical fertilizer to increase fruit yield red pepper and improve soil health.

Cell-compatibility of physicochemically and biologically modified polymer surfaces (물리화학적 및 생물학적으로 표면개질된 고분자의 세포 적합성 연구)

  • Lee, J.H.;Park, K.H.;Khang, G.S.;Lee, H.B.;Andrade, J.D.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.1-3
    • /
    • 1989
  • We have treated polymer surfaces such as polyethylene, polystyrene and polyester by various physicochemical and biological surface modification methods to be suitable for cell adhesion. The physicochemical methods we used were $O_2$ plasma discharge, corona discharge, sulfuric acid and chloric acid treatments. For the biological treatments, blood proteins such as plasma protein, serum protein and fibronectin were adsorbed onto the polymer surfaces. Chinese Hamster Ovary (CHO) cells were cultured on the surface-modified polymers and the cell-compatibility of those surfaces were compared. The chloric acid and fibronectin treatments were found to be the best methods of rendering the polymer surfaces adhesive for CHO cells.

  • PDF

Effect of Chemical Fertilizer and Compost on Soil Physicochemical Properties, Leaf Mineral Content, Yield and Fruit Quality of Red Pepper (Capsicum annuum L.) in Open Field

  • Lee, Seong Eun;Park, Jin Myeon;Park, Young Eun;Lim, Tae Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.683-688
    • /
    • 2015
  • Nowadays, sustainable and environment-friendly agriculture has become an important issue all around the world, and repeated applications of mineral and/or organic fertilizer will probably affect mineral nutrient dynamics in soil in the long term but only a limited number of observations are available. This study was carried out to investigate whether there is any influence of different fertilizer management for red pepper (Capsicum annuum L.) cultivation on soil physicochemical properties, leaf mineral content, yield and fruit quality in the aspect of long-term practice in open field condition. NPK, NPK+compost, compost only, and unfertilized control plot were included in the treatments. The application of chemical fertilizer and/or compost repeated annually for 17 years from 1994 to 2011. Soil organic matter content was higher in compost treatments than in no-manure treatments. Available phosphate and the yield of red pepper were highest in NPK+compost treatment followed by NPK (chemical fertilizer), compost, and control. The results indicate that in the long term, nitrogen supply is still needed for increasing red pepper yield, but reduction in the use of chemical fertilizer could be also possible with the proper application of compost.