• Title/Summary/Keyword: Chemical stoichiometry

Search Result 164, Processing Time 0.022 seconds

Triclinic Na3.12Co2.44(P2O7)2 as a High Redox Potential Cathode Material for Na-Ion Batteries

  • Ha, Kwang-Ho;Kwon, Mi-Sook;Lee, Kyu Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.187-194
    • /
    • 2020
  • Two types of sodium cobalt pyrophosphates, triclinic Na3.12Co2.44(P2O7)2 and orthorhombic Na2CoP2O7, are compared as high-voltage cathode materials for Na-ion batteries. Na2CoP2O7 shows no electrochemical activity, delivering negligible capacity. In contrast, Na3.12Co2.44(P2O7)2 exhibits good electrochemical performance, such as high redox potential at ca. 4.3 V (vs. Na/Na+) and stable capacity retention over 50 cycles, although Na3.12Co2.44(P2O7)2 delivered approximately 40 mA h g-1. This is attributed to the fact that Na2CoP2O7 (~3.1 Å) has smaller diffusion channel size than Na3.12Co2.44(P2O7)2 (~4.2 Å). Moreover, the electrochemical performance of Na3.12Co2.44(P2O7)2 is examined using Na cells and Li cells. The overpotential of Na cells is smaller than that of Li cells. This is due to the fact that Na3.12Co2.44(P2O7)2 has a smaller charge transfer resistance and higher diffusivity for Na+ ions than Li+ ions. This implies that the large channel size of Na3.12Co2.44(P2O7)2 is more appropriate for Na+ ions than Li+ ions. Therefore, Na3.12Co2.44(P2O7)2 is considered a promising high-voltage cathode material for Na-ion batteries, if new electrolytes, which are stable above 4.5 V vs. Na/Na+, are introduced.

Decrease of PEMFC Performance by Toluene in Air (공기 중 톨루엔에 의한 고분자전해질연료전지의 성능감소)

  • Lee, Ho;Song, Jin-Hoon;Kim, Ki-Joong;Kim, Sae-Hoon;Ahn, Byung-Ki;Lim, Tae-Won;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • The contamination effect of toluene in the airstream on PEM fuel cell performance was studied with various toluene concentration under different operation conditions. And the recovery of the cell performance by applying clean air and the removal of toluene in the air by adsorption of active carbon were investigated. The toluene concentration range used in the experiments was from 0.1 ppm to 5.0 ppm. The performance degradation and recovery were measured by constant-current discharging and electrochemical impedance spectroscopy(EIS). Toluene adsorption capacity of KOH impregnated active carbon was obtained from the adsorption isotherm curve. The severity of the contamination increased with increasing toluene concentration, current density and air stoichiometry, but decrease with increasing relative humidity. The cell performance was recovered by toluene oxidation with oxygen and water in humidified neat air. EIS showed that the increase of charge transfer resistance due to toluene adsorption on Pt surface mainly reduced the performance of PEMFC. Toluene adsorption capacity of active carbon decreased as KOH weight increased in KOH impregnated active carbon.

Selective Reduction with Zinc Borohydride. Reaction of Zinc Borohydride with Selected Organic Compounds Containing Representative Functional Groups (수소화붕소아연에 의한 선택환원. 수소화붕소아연의 대표적 유기화합물과의 반응)

  • Yoon Nung Min;Ho Jun Lee;Hye Kyu Kim;Jahyo Kang
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.59-72
    • /
    • 1976
  • The addition of one mole of zinc chloride to 2.33 moles of sodium borohydride in tetrahydrofuran at room temperature gave a clear chloride-free supernatant solution of zinc borohydride after stirring three days and standing at room temperature.The approximate rates and stoichiometry of the reaction of zinc borohydride with 54 selected organic compounds were determined in order to test the utility of the reagent as a selective reducing agent. Aldehydes and ketones were reduced rapidly, aromatic ketones being somewhat slowly, and the double bond of cinnamaldehyde was not attacked. Acyl halides were reduced rapidly within one hour, but acid anhydrides were reduced at a moderate rate. Carboxylic acids, both aliphatic and aromatic, were slowly reduced to alcoholic stage. Esters were inert to this reagent but a cyclic ester, γ-butyrolactone, was slowly attacked. Primary amides were reduced slowly with partial evolution of hydrogen, whereas tertiary amides underwent neither reduction nor hydrogen evolution. Epoxides and nitriles were all inert, as well as nitro, azo, and azoxy compounds. Cyclohexanone oxime and phenyl isocyanate were reduced slowly but pyridine was inert. Disulfide, sulfoxide, sulfone and sulfonic acids were stable to this reagent.

  • PDF

Direct and Derivative Spectrophotometric Determination of Cobalt (II) in Microgram Quantities with 2-Hydroxy-3-methoxy Benzaldehyde Thiosemicarbazone (2-Hydroxy-3-methoxy Benzaldehyde Thiosemicarbazone를 사용하여 마이크로 그램 코발트(II)의 직접 및 유도 분광광도법에 의한 정량)

  • Kumar, A.Praveen;Reddy, P.Raveendra;Reddy, V.Krishna
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.4
    • /
    • pp.331-338
    • /
    • 2007
  • A rapid, simple and sensitive spectrophotometric method was developed for the determination of cobalt(II) using 2-hydroxy-3-methoxy benzaldehyde thiosemicarbazone (HMBATSC) as a analytical reagent. The metal ion in aqueous medium forms a brown coloured complex with HMBATSC at pH 6.0. The complex has two absorption maxima at 375 nm and 390 nm. At 375 nm, the reagent shows considerable absorbance, while at 390 nm the reagent does not shows appreciable absorbance. Hence, analytical studies were carried out at 390 nm. Beer's law is obeyed in the range of 0.059-2.357 μg ml-1 of Co(II). The molar absorptivity and Sandall's sensitivity of the method are 2.74×104 l mol-1 cm-1 and 0.0024 μg cm-2 respectively. The interference of various diverse ions has been studied. The complex has 1:2 [Co(II)- HMBATSC] stoichiometry. A method for the determination of cobalt(II) by second order derivative spectrophotometry has also been proposed. The proposed methods were applied for the determination of cobalt(II) in alloy steels, vitamin B12 and in some biological samples.

N-Oxidation of Pyrazines by Bromamine-B in Perchloric Acid Medium: Kinetic and Mechanistic Approach

  • Puttaswamy;Shubha, J.P.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1939-1945
    • /
    • 2009
  • Kinetic investigations on the oxidation of pyrazine and four 2-substituted pyrazines viz., 2-methylpyrazine, 2-ethylpyrazine, 2-methoxypyrazine and 2-aminopyrazine by bromamine-B (BAB) to the respective N-oxides have been studied in HCl$O_4$ medium at 303 K. The reactions show identical kinetics being first-order each in $[BAB]_o\;and\;[pyrazine]_o$, and a fractional- order dependence on $[H^+]$. Effect of ionic strength of the medium and addition of benzenesulfonamide or halide ions showed no significant effect on the reaction rate. The dielectric effect is positive. The solvent isotope effect was studied using $D_2$O. The reaction has been studied at different temperatures and activation parameters for the composite reaction have been evaluated from the Arrhenius plots. The reaction showed 1:1 stoichiometry and the oxidation products of pyrazines were characterized as their respective N-oxides. Under comparable experimental conditions, the oxidation rate of pyrazines increased in the order: 2-aminopyrazine > 2-methoxypyrazine > 2-ethylpyrazine > 2-methylpyrazine > pyrazine. The rates correlate with the Hammett $\sigma$ relationship and the reaction constant $\rho$ was found to be -0.8, indicating that electron donating centres enhance the rate of reaction. An isokinetic temperature of $\beta$ = 333 K, indicated that the reaction was enthalpy controlled. A mechanism consistent with the experimental results has been proposed in which the rate determining step is the formation of an intermediate complex between the substrate and the diprotonated species of the oxidant. The related rate law in consistent with observed results has been deduced.

NMR Spectroscopic Analysis on the Chiral Recognition of Noradrenaline by β-Cyclodextrin ( β-CD) and Carboxymethyl- β-cyclodextrin (CM- β-CD)

  • Lee, Sang-Hoo;Yi, Dong-Heui;Jung, Seung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.216-220
    • /
    • 2004
  • ${\beta}$-CD and CM- ${\beta}$-CD as chiral NMR shift agents were used to resolve the enantiomers of noradrenaline (NA). The stoichiometry of each complex formed between the CDs and the enantiomers of NA was found to be 1 : 1 through the continuous variation plots. The binding constants (K) of the complexes were determined from $^1H$ NMR titration curves. This result indicated that both ${\beta}$-CD and CM- ${\beta}$-CD formed the complexes with the S(+)-NA more preferentially than its R(-)-enantiomer. The K values for the complexes with ${\beta}$-CD ($K_{S(+)}$ = 537 $M^{-1}$ and $K_{R(-)}$ = 516 $M^{-1}$ was larger than those with CM- ${\beta}$-CD ($K_{S(+)}$ = 435 $M^{-1}$ and $K_{R(-)}$ = 313 $M^{-1}$), however, enantioselectivity (${\alpha}$) of S(+)- and R(-)-NA to CM- ${\beta}$-CD ( ${\alpha}$ = 1.38) was larger than that to ${\beta}$-CD ( ${\alpha}$ = 1.04), indicating that CM- ${\beta}$-CD was the better chiral NMR solvating agents for the recognition of the enantiomers of NA. Two dimensional rotating frame nuclear Overhauser enhancement spectroscopy (ROESY) experiments were also performed to explain the binding properties in terms of spatial fitting of the NA molecule into the macrocyclic cavities.

Synthesis, Characterization, and Absorption Spectra of Metallamacrocycles, [Pd{α,ω-bis(diphenylphosphino)oligothienylene}Cl2]2

  • Kang, Dong-Min;Kim, Sam-Gon;Lee, Sung-Joong;Park, Jong-Keun;Park, Ki-Min;Shin, Sung-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1390-1394
    • /
    • 2005
  • Dimeric metallamacrocycles of 2 : 2 (metal-to-ligand) stoichiometry, [Pd{${\alpha},{\omega}$-bis(diphenylphosphino)oligothienylene}$Cl_2]_2$ 1-3 were prepared from a self-assembly reaction of $[Pd(CH_3CN)_2Cl_2]$ and ${\alpha},{\omega}$-bis-(diphenylphosphino)oligothienylene in 90-94% yields. The structures of metallamacrocycles 1-3 were determined by X-ray diffraction. 1 crystallizes in the monoclinic space group $P2_1$/n with a/$\AA$ = 12.0737(13), b/$\AA$ = 17.1993(18), c/$\AA$ = 13.0951(14) and ${\beta}/^{\circ}$ = 101.505(2). 2 crystallizes in the triclinic space group P with a/$\AA$ = 10.2634(4), b/$\AA$ = 19.7855(9), c/$\AA$ = 21.0851(9), ${\alpha}/^{\circ}$ = 63.1010(10), ${\beta}/^{\circ}$ = 86.5880(10), ${\gamma}/^{\circ}$ = 81.2280(10). 3 crystallizes in the triclinic space group P with a/$\AA$ = 10.4353(19), b/$\AA$ = 13.482(3), c/$\AA$ = 13.816(3), ${\alpha}/^{\circ}$ = 108.027(4), ${\beta}/^{\circ}$ = 90.461(4), ${\gamma}/^{\circ}$ = 93.261(4). The UV spectra of 1-3 were characterized.

Kinetic Studies on the Oxidation of Oxalate Complex of Oxomolybdenum (V) of Hydrogen Chromate Ion (수소크롬산 (VI) 이온에 의한 몰리브덴 (V) 의 옥살산착물의 산화반응)

  • Chang-Yong Kwon;Chang-Su Kim
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.231-236
    • /
    • 1986
  • Oxidation of $[Mo_2O_4(C_2O_4)_2(OH_2)_2]^{2-}$ with hydrogen chromate yields the molybdenum (VI) complex, $[Mo_2O_4(C_2O_4)_2(OH_2)_2]^{2-}$. Stoichiometry for the reaction of $[Mo_2O_4(C_2O_4)_2(OH_2)_2]^{2-}$ with hydrogen chromate are expressed as ${3Mo_2}^V+2Cr^{VI}\;{\rightleftharpoons}\;{3Mo_2}_{VI}+2Cr^{III}$. Observed rate constants are dependent on $[H+]^2$. The kinetic data are consistent with a mechanism in which three successive single-electron steps convert $Cr^{VI}$to $Cr^{III}$ by way of intermediate Cr^V$ and $Cr^{IV}$. Mechanism of the reaction are presented and discussed.

  • PDF

Study on Etching Damages of YMnO3 Thin Films by Cl-based Plasma (Cl-based 플라즈마에 의한 YMnO3 박막의 식각 damage에 관한 연구)

  • 박재화;기경태;김동표;김창일;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.449-453
    • /
    • 2003
  • Ferroelectric YMnO$_3$ thin films were etched with Ar/Cl$_2$ and CF$_4$/Cl$_2$ inductively coupled plasma (ICP). The maximum etch rate of YMnO$_3$ thin film was 300 $\AA$/min at a Ar/Cl$_2$ gas mixing ratio of 2/8, a RF power of 800 W, a DE bias of 200 V, a chamber pressure of 15 mTorr, and a substrate temperature of 30 $^{\circ}C$. From the X-ray photoelectron spectroscopy (XPS) analysis, yttrium etched by chemical reactions with Cl radicals assisted by Ar ion bombardments in Ar/Cl$_2$ plasma. In CF$_4$/Cl$_2$ plasma, yttrium are remained on the etched surface of YMnO$_3$ and formed of nonvolatile YF$_{x}$ compounds manganese etched effectively by chemical reactions with Cl and F radicals. From the X-ray diffraction (XRD) analysis, the (0004) diffraction peak intensity of the YMnO$_3$ thin film etched in Ar/Cl$_2$ plasma shows lower value than that in CF$_4$/Cl$_2$ plasma. It indicates that the crystallinty of YMnO$_3$ thin film is more easily damaged by the Ar ion bombardment than the changes of stoichiometry due to nonvolatile etch by-products.s.

Study of dry etching chrateristics of freeoelectric $YMnO_{3}$ thin films (강유전체 $YMno_{3}$ 박막의 건식식각 특성연구)

  • Kim, In-Pyo;Park, Jae-Hwa;Kim, Kyoung-Tae;Kim, Chang-Il;Jang, Eui-Goo;Eom, Joon-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.159-162
    • /
    • 2002
  • Ferroelectric $YMnO_{3}$ thin films were etched with $Ar/Cl_{2}$ and $CF_{4}/Cl_{2}$ inductivly coupled plasma (ICP). The maximum etch rate of $YMnO_{3}$ thin film was $300{\AA}/min$ at a $Ar/Cl_{2}$ gas mixing ratio of 2/8, a RF power of 800 W, a dc bias of 200 V, a chamber pressure of 15 mTorr, and a substrate temperature of ${30^{\circ}C}$. From the X-ray photoelectron spectroscopy (XPS) analysis , yttrium not only etched by chemical reactions with Cl radicals, but also assisted by Ar ion bombardments in $Ar/Cl_{2}$ plasma. In $CF_{4}/Cl_{2}$ plasma, yttrium are remained on the etched surface of $YMnO_{3}$ and formed of nonvolatile YFx compounds Manganese etched effectively by chemical reactions with Cl and F radicals. From the X-ray diffraction (XRD) analysis, the (0004) diffraction peak intensity of the $YMnO_{3}$ thin film etched in $Ar/Cl_{2}$ plasma shows lower value than that in $CF_{4}/Cl_{2}$ plasma. It is indicates that the crystallinty of $YMnO_{3}$ thin film is more easily damaged by the Ar ion bombardment than the changes of stoichiometry due to nonvolatile etch by-products.

  • PDF