Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00633

Triclinic Na3.12Co2.44(P2O7)2 as a High Redox Potential Cathode Material for Na-Ion Batteries  

Ha, Kwang-Ho (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University)
Kwon, Mi-Sook (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University)
Lee, Kyu Tae (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.2, 2020 , pp. 187-194 More about this Journal
Abstract
Two types of sodium cobalt pyrophosphates, triclinic Na3.12Co2.44(P2O7)2 and orthorhombic Na2CoP2O7, are compared as high-voltage cathode materials for Na-ion batteries. Na2CoP2O7 shows no electrochemical activity, delivering negligible capacity. In contrast, Na3.12Co2.44(P2O7)2 exhibits good electrochemical performance, such as high redox potential at ca. 4.3 V (vs. Na/Na+) and stable capacity retention over 50 cycles, although Na3.12Co2.44(P2O7)2 delivered approximately 40 mA h g-1. This is attributed to the fact that Na2CoP2O7 (~3.1 Å) has smaller diffusion channel size than Na3.12Co2.44(P2O7)2 (~4.2 Å). Moreover, the electrochemical performance of Na3.12Co2.44(P2O7)2 is examined using Na cells and Li cells. The overpotential of Na cells is smaller than that of Li cells. This is due to the fact that Na3.12Co2.44(P2O7)2 has a smaller charge transfer resistance and higher diffusivity for Na+ ions than Li+ ions. This implies that the large channel size of Na3.12Co2.44(P2O7)2 is more appropriate for Na+ ions than Li+ ions. Therefore, Na3.12Co2.44(P2O7)2 is considered a promising high-voltage cathode material for Na-ion batteries, if new electrolytes, which are stable above 4.5 V vs. Na/Na+, are introduced.
Keywords
Na-ion batteries; Cathode; Off-stoichiometry; Pyrophosphate;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Berthelot, R., Carlier, D., Delmas, C., Nat. Mater., 2011, 10(1), 74-80.   DOI
2 Braconnier, J. J., Delmas, C., Hagenmuller, P., Mater. Res. Bull., 1982, 17(8), 993-1000.   DOI
3 Takeda, Y., Nakahara, K., Nishijima, M., Imanishi, N., Yamamoto, O., Takano, M., Kanno, R., Mater. Res. Bull., 1994, 29(6), 659-666.   DOI
4 Didier, C., Guignard, M., Darriet, J., Delmas, C., Inorg. Chem., 2012, 51(20), 11007-11016.   DOI
5 Guignard, M., Didier, C., Darriet, J., Bordet, P., Elkaim, E., Delmas, C., Nat. Mater., 2013, 12(1), 74-80.   DOI
6 Sauvage, F., Laffont, L., Tarascon, J. M., Baudrin, E., Inorg. Chem., 2007, 46(8), 3289-3294.   DOI
7 Yabuuchi, N., Kajiyama, M., Iwatate, J., Nishikawa, H., Hitomi, S., Okuyama, R., Usui, R., Yamada, Y., Komaba, S., Nat. Mater., 2012, 11(6), 512-517.   DOI
8 Komaba, S., Yabuuchi, N., Nakayama, T., Ogata, A., Ishikawa, T., Nakai, I., Inorg. Chem., 2012, 51(11), 6211-6220.   DOI
9 Hong, S. Y., Kim, Y., Park, Y., Choi, A., Choi, N. S., Lee, K. T., Energy Environ. Sci., 2013, 6(7), 2067-2081.   DOI
10 Sathiya, M., Hemalatha, K., Ramesha, K., Tarascon, J. M., Prakash, A. S., Chem. Mater., 2012, 24(10), 1846-1853.   DOI
11 Tripathi, R., Wood, S. M., Islam, M. S., Nazar, L. F., Energy Environ. Sci., 2013, 6(8), 2257-2264.   DOI
12 Ellis, B. L., Makahnouk, W. R. M., Rowan-Weetaluktuk, W. N., Ryan, D. H., Nazar, L. F., Chem. Mater., 2010, 22(3), 1059-1070.   DOI
13 Barker, J., Saidi, M. Y., Swoyer, J. L., Electrochem. Solid. St., 2003, 6(1), A1-A4.   DOI
14 Sauvage, F., Quarez, E., Tarascon, J. M., Baudrin, E., Solid. State. Sci., 2006, 8(10), 1215-1221.   DOI
15 Gover, R. K. B., Bryan, A., Burns, P., Barker, J., Solid. State. Ion., 2006, 177(17-18), 1495-1500.   DOI
16 Yuvaraj, S., Oh, W., Yoon, W. S., J. Electrochem. Sci. Te., 2019, 10(1), 1-13.   DOI
17 Trad, K., Carlier, D., Croguennec, L., Wattiaux, M., Lajmi, B., Ben Amara, M., Delmas, C., J. Phys. Chem. C., 2010, 114(21), 10034-10044.   DOI
18 Kim, H., Shakoor, R. A., Park, C., Lim, S. Y., Kim, J. S., Jo, Y. N., Cho, W., Miyasaka, K., Kahraman, R., Jung, Y., Choi, J. W., Adv. Funct. Mater., 2013, 23(9), 1147-1155.   DOI
19 Barpanda, P., Liu, G., Avdeev, M., Yamada, A., Chem. Electrochem., 2014, 1(9), 1488-1491.
20 Barpanda, P., Ye, T., Avdeev, M., Chung, S. C., Yamada, A., J. Mater. Chem. A., 2013, 1(13), 4194-4197.   DOI
21 Park, C. S., Kim, H., Shakoor, R. A., Yang, E., Lim, S. Y., Kahraman, R., Jung, Y., Choi, J. W., J. Am. Chem. Soc., 2013, 135(7), 2787-2792.   DOI
22 Ha, K.-H., Woo, S. H., Mok, D., Choi, N.-S., Park, Y., Oh, S. M., Kim, Y., Kim, J., Lee, J., Nazar, L. F., Lee, K. T., Adv. Energy Mater., 2013, 3(6), 770-776.   DOI
23 Niu, Y. B., Xu, M. W., Cheng, C. J., Bao, S. J., Hou, J. K., Liu, S. G., Yi, F. L., He, H., Li, C. M., J. Mater Chem. A., 2015, 3(33), 17224-17229.   DOI
24 Chen, C. Y., Matsumoto, K., Nohira, T., Hagiwara, R., J. Electrochem. Soc., 2015, 162(1), A176-A180.   DOI
25 Levi, M. D., Aurbach, D., J. Phys. Chem. B., 1997, 101(23), 4641-4647.   DOI
26 Vadivel Murugan, A., Muraliganth, T., Manthiram, A., J. Electrochem. Soc., 2009, 156(2), A79-A83.   DOI
27 Erragh, F., Boukhari, A., Elouadi, B., Holt, E. M., J. Cryst Spectrosc., 1991, 21(3), 321-326.   DOI
28 Beaury, L., Derouet, J., Binet, L., Sanz, F., Ruiz-Valero, C., J. Solid State Chem., 2004, 177(4-5), 1437-1443.   DOI
29 Barpanda, P., Lu, J. C., Ye, T., Kajiyama, M., Chung, S. C., Yabuuchi, N., Komaba, S., Yamada, A., Rsc. Adv., 2013, 3(12), 3857-3860.   DOI
30 Song, Y. M., Han, J. G., Park, S., Lee, K. T., Choi, N. S., J. Mater. Chem. A., 2014, 2(25), 9506-9513.   DOI
31 Levi, M. D., Levi, E. A., Aurbach, D., J. Electroanal. Chem., 1997, 421(1-2), 89-97.   DOI
32 Ura, H., Nishina, T., Uchida, I., J. Electroanal. Chem., 1995, 396(1-2), 169-173.   DOI
33 Tofield, B. C., Farrington, G. C., Nature, 1979, 278(5703), 438-439.   DOI
34 Farrington, G. C., Dunn, B. S., Briant, J. L., Solid. State. Ion., 1981, 3, 405-408.   DOI
35 Briant, J. L., Farrington, G. C., J. Electrochem. Soc., 1981, 128(9), 1830-1834.   DOI
36 Wizansky, A. R., Rauch, P. E., Disalvo, F. J., J. Solid. State Chem., 1989, 81(2), 203-207.   DOI
37 Slater, M. D., Kim, D., Lee, E., Johnson, C. S., Adv Funct Mater, 2013, 23(8), 947-958.   DOI
38 Sanz, F., Parada, C., Rojo, J. M., Ruiz-Valero, C., Saez-Puche, R., J. Solid State Chem., 1999, 145(2), 604-611.   DOI
39 Ellis, B. L., Nazar, L. F., Curr. Opin. Solid. St. M., 2012, 16(4), 168-177.   DOI
40 Palomares, V., Serras, P., Villaluenga, I., Hueso, K. B., Carretero-Gonzalez, J., Rojo, T., Energy Environ. Sci., 2012, 5(3), 5884-5901.   DOI
41 Braconnier, J. J., Delmas, C., Fouassier, C., Hagenmuller, P., Mater. Res. Bull., 1980, 15(12), 1797-1804.   DOI