• Title/Summary/Keyword: Chemical etching

Search Result 932, Processing Time 0.029 seconds

High density plasma etching of CoFeB and IrMn magnetic films with Ti hard mask

  • Xiao, Y.B.;Kim, E.H.;Kong, S.M.;Chung, C.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.233-233
    • /
    • 2010
  • Magnetic random access memory (MRAM), based on magnetic tunnel junction (MTJ) and CMOS, is a prominent candidate among prospective semiconductor memories because it can provide nonvolatility, fast access time, unlimited read/write endurance, low operating voltage and high storage density. The etching of MTJ stack with good properties is one of a key process for the realization of high density MRAM. In order to achieve high quality MTJ stack, the use of CoFeB and IrMn magnetic films as free layers was proposed. In this study, inductively coupled plasma reactive ion etching of CoFeB and IrMn thin films masked with Ti hard mask was investigated in a $Cl_2$/Ar gas mix. The etch rate of CoFeB and IrMn films were examined on varying $Cl_2$ gas concentration. As the $Cl_2$ gas increased, the etch rate monotonously decreased. The effective of etch parameters including coil rf power, dc-bais voltage, and gas pressure on the etch profile of CoFeB and IrMn thin film was explored, At high coil rf power, high dc-bais voltage, low gas pressure, the etching of CoFeB and IrMn displayed better etch profiles. Finally, the clean and vertical etch sidewall of CoFeB and IrMn free layers can be achieved by means of thin Ti hard mask in a $Cl_2$/Ar plasma at the optimized condition.

  • PDF

High density plasma etching of MgO thin films in $Cl_2$/Ar gases

  • Xiao, Y.B.;Kim, E.H.;Kong, S.M.;Chung, C.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.213-213
    • /
    • 2010
  • Magnetic random access memory (MRAM), based on magnetic tunnel junction (MTJ) and CMOS, is one of the best semiconductor memories because it can provide nonvolatility, fast access time, unlimited read/write endurance, low operating voltage and high storage density. For the realization of high density MRAM, the etching of MTJ stack with good properties is one of a key process. Recently, there has been great interest in the MTJ stack using MgO as barrier layer for its huge room temperature MR ratio. The use of MgO barrier layer will undoubtedly accelerate the development of MTJ stack for MRAM. In this study, high-density plasma reactive ion etching of MgO films was investigated in an inductively coupled plasma of $Cl_2$/Ar gas mixes. The etch rate, etch selectivity and etch profile of this magnetic film were examined on vary gas concentration. As the $Cl_2$ gas concentration increased, the etch rate of MgO monotonously decreased and etch slop was slanted. The effective of etch parameters including coil rf power, dc-bais voltage, and gas pressure on the etch profile of MgO thin film was explored, At high coil rf power, high dc-bais voltage, low gas pressure, the etching of MgO displayed better etch profiles. Finally, the clean and vertical etch sidewall of MgO films was achieved using $Cl_2$/Ar plasma at the optimized etch conditions.

  • PDF

Reactivity Evaluation on Copper Etching Using Organic Chelators (유기 킬레이터들을 이용한 구리 식각에 대한 반응성 평가)

  • Kim, Chul Hee;Lim, Eun Taek;Park, Chan Ho;Park, Sung Yong;Lee, Ji Soo;Chung, Chee Won;Kim, Dong Wook
    • Korean Journal of Materials Research
    • /
    • v.31 no.10
    • /
    • pp.569-575
    • /
    • 2021
  • The reactivity evaluation of copper is performed using ethylenediamine, aminoethanol, and piperidine to apply organic chelators to copper etching. It is revealed that piperidine, which is a ring-type chelator, has the lowest reactivity on copper and copper oxide and ethylenediamine, which is a chain-type chelator, has the highest reactivity via inductively coupled plasma-mass spectroscopy (ICP-MS). Furthermore, it is confirmed that the stable complex of copper-ethylenediamine can be formed during the reaction between copper and ethylenediamine using nuclear magnetic resonance (NMR) and radio-thin layer chromatography. As a final evaluation, the copper reactivity is evaluated by wet etching using each solution. Scanning electron micrographs reveal that the degree of copper reaction in ethylenediamine is stronger than that in any other chelator. This result is in good agreement with the evaluation results obtained by ICP-MS and NMR. It is concluded that ethylenediamine is a prospective etch gas for the dry etching of the copper.

Study on Wet chemical Etching Characterization of Zinc Oxide Film for Transparency Conductive Oxide Application (투명 전도성 산화물 전극으로의 응용을 위한 산화아연(ZnO) 코팅막의 습식 식각 특성연구)

  • Yoo, Dong-Geun;Kim, Myoung-Hwa;Jeong, Seong-Hun;Boo, Jin-Hyo
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.73-79
    • /
    • 2008
  • In order to apply for transparent conductive oxide(TCO), we deposited ZnO thin films on the glass at room temperature by RF magnetron sputtering method. Deposition conditions for high transmittance and low resistivity were optimized in our previous studies. Under the deposition condition with the RF power of 200 W, target to substrate distance of 30 mm and working pressure of 5 mTorr, highly conductive($7.4{\times}10^{-3}{\Omega}cm$) and transparent(over 85%) ZnO films were prepared. Highly oriented ZnO film in the [002] direction were obtained with specifically designed ZnO targets. Systematic study on dependence of deposition parameters on electrical and optical properties of the as-grown ZnO films were mainly investigated in this work. And for application tests using these films as transparent conductive oxide anodes, wet chemical etching behaviors of ZnO films were also investigated using various chemicals. Wet-chemical etching behavior of ZnO films were investigated using various acid solutions. The concentrations of these different acid solutions were controlled to study the etching shapes and etching rate. ZnO films were anisotropically etched at various concentrations and wet etching led to crater-like surface structure. Also we firstly found that the etching rate and etching shapes of ZnO films strongly depended on the etchant concentrations (i.e. pH) and the etching rate is exponentially decreased with increasing pH values regardless of the acid etchants.

Improved light extraction efficiency of vertical AlGaInP-based LEDs by n-AlGaInP surface roughening (n-표면 거칠기가 형성된 AlGaInP 수직형 적색 발광다이오드의 광추출효율 증가)

  • Seo, Jae-Won;Oh, Hwa-Sub;Song, Hyun-Don;Park, Kyung-Wook;Ryu, Seong-Wook;Park, Yung-Ho;Park, Hae-Sung;Kwak, Joon-Seop
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.353-358
    • /
    • 2008
  • In order to increase extraction efficiency of AlGaInP-based vertical RED LEDs, chemical wet etching technique was produced by using a roughened surface with triangle-like morphology. A commonly used $H_3PO_4$-based solution was applied for chemical wet etching. The light extraction of AlGaInP LED was related to the n-side roughed surface morphology. The morphology of roughed surface is analyzed by the atomic force microscope (AFM). As a result, the roughed surface AlGaInP LED has a root-mean-square (RMS) roughness of 44 nm. The brightness shows 41% increase after roughening n-side surface, as compared to the ordinary flat surface LED.

Surface Analysis of Fluorine-Plasma Etched Y-Si-Al-O-N Oxynitride Glasses

  • Lee, Jung-Ki;Hwang, Seong-Jin;Lee, Sung-Min;Kim, Hyung-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.38.1-38.1
    • /
    • 2009
  • Plasma etching is an essential process for electronic device industries and the particulate contamination during plasma etching has been interested as a big issue for the yield of productivity. The oxynitride glasses have a merit to prevent particulate contamination due to their amorphous structure and plasma etching resistance. The YSiAlON oxynitride glasses with increasing nitrogen content were manufactured. Each oxynitride glasses were fluorine-plasma etched and their plasma etching rate and surface roughness were compared with reference materials such as sapphire, alumina and quartz. The reinforcement mechanism of plasma etching resistance of the YSiAlON glasses studied by depth profiling at plasma etched surface using electron spectroscopy for chemical analysis. The plasma etching rate decreased with nitrogen content and there was no selective etching at the plasma etched surface of the oxynitride glasses. The concentration of silicon was very low due to the generation of SiF4 very volatile byproduct and the concentration of aluminum and yttrium was relatively constant. The elimination of silicon atoms during plasma etching was reduced with increasing nitrogen content because the content of the nitrogen was constant. And besides, the concentration of oxygen was very low on the plasma etched surface. From the study, the plasma etching resistance of the glasses may be improved by the generation of nitrogen related structural groups and those are proved by chemical composition analysis at plasma etched surface of the YSiAlON oxynitride glasses.

  • PDF

Characterization of Band Gaps of Silicon Quantum Dots Synthesized by Etching Silicon Nanopowder with Aqueous Hydrofluoric Acid and Nitric Acid

  • Le, Thu-Huong;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1523-1528
    • /
    • 2014
  • Silicon quantum dots (Si QDs) were synthesized by etching silicon nanopowder with aqueous hydrofluoric acid (HF) and nitric acid ($HNO_3$). Then, the hydride-terminated Si QDs (H-Si QDs) were functionalized by 1- octadecene (ODE). By only controlling the etching time, the maximum luminescence peak of octadecylterminated Si QDs (ODE-Si QDs) was tuned from 404 nm to 507 nm. The average optical gap was increased from 2.60 eV (ODE-Si QDs-5 min) for 5 min of etching to 3.20 eV (ODE-Si QDs-15 min) for 15 min of etching, and to 3.40 eV (ODE-Si QDs-30 min) for 30 min of etching. The electron affinities (EA), ionization potentials (IP), and quasi-particle gap (${\varepsilon}^{qp}_{gap}$) of the Si QDs were determined by cyclic voltammetry (CV). The quasi-particle gaps obtained from the CV were in good agreement with the average optical gap values from UV-vis absorption. In the case of the ODE-Si QDs-30 min sample, the difference between the quasi-particle gap and the average optical gap gives the electron-hole Coulombic interaction energy. The additional electronic levels of the ODE-Si QDs-30 min and ODE-Si QDs-15 min samples determined by the CV results are interpreted to have originated from the Si=O bond terminating Si QD.

Reactive ion Etching Characterization of SiC Film Deposited by Thermal CVD Method for MEMS Application (MEMS 적용을 위한 Thermal CVD 방법에 의해 증착한 SiC막의 반응성 이온 Etching 특성 평가)

  • 최기용;최덕균;박지연;김태송
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.299-304
    • /
    • 2004
  • In recent years, silicon carbide has emerged as an important material for MEMS application. In order to fabricate an SiC film based MEMS structure by using chemical etching method, high operating temperature is required due to high chemical stability Therefore, dry etching using plasma is the best solution. SiC film was deposited by thermal CVD at the temperature of 100$0^{\circ}C$ and pressure of 10 torr. SiC was dry etched with a reactive ion etching (RIE) system, using SF$_{6}$/O$_2$ and CF$_4$/O$_2$ gas mixture. Etch rate has been investigated as a function of oxygen concentration in the gas mixture, rf power, working pressure and gas flow rate. Etch rate was measured by surface profiler and FE-SEM. SF$_{6}$/O$_2$ gas mixture showed higher etch rate than CF$_4$/O$_2$ gas mixture. Maximum etch rate appeared at RF Power of 450W. $O_2$ dilute mixtures resulted in an increasing of etch rate up to 40%, and the superior anisotropic cross section was observe

Reactive ion etching characterization of SiC film deposited by thermal CVD method for MEMS application (MEMS 적용을 위한 thermal CVD 방법에 의해 증착한 SiC막의 etching 특성 평가)

  • Choi, Gi-Yong;Choi, Duck-Kyun;Park, Ji-Yeon;Kim, Tae-Song
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.868-871
    • /
    • 2003
  • In recent years, silicon carbide has emerged as an important material for MEMS application. In order to fabricate an SiC film based MEMS structure by using chemical etching method, high operating temperature is required due to high chemical stability. Therefore, dry etching using plasma is the best solution. SiC film was deposited by thermal CVD at the temperature of $1000^{\circ}C$ and pressure of 10 torr. SiC was dry etched with a reactive ion etching (RIE) system, using $SF_6/O_2$ and $CF_4/O_2$ gas mixture. Etch rate have been investigated as a function of oxygen concentration in the gas mixture, RF power, and working pressure. Etch rate was measured by surface profiler and FE-SEM. $SF_6/O_2$ gas mixture has been shown high etch rate than $CF_4/O_2$ gas mixture. Maximum etch rate appeared at 450W of RF power. $O_2$ dilute mixtures resulted in an increasing of etch rate up to 40%, and the superior anisotropic cross section was observed.

  • PDF

Photo-assisted GaN wet-chemical Etching using KOH based solution (KOH계열 수용액을 이용한 GaN 박막의 photo-assisted 식각 특성)

  • Lee, Hyoung-Jin;Song, Hong-Ju;Choi, Hong-Goo;Ha, Min-Woo;Roh, Cheong-Hyun;Lee, Jun-Ho;Park, Jung-Ho;Hahn, Cheol-Koo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.339-339
    • /
    • 2010
  • Photo-assisted wet chemical etching of GaN thin film was studied using KOH based solutions. A $2{\mu}m-2{\mu}m$ titanium line-and-space pattern was used as a etching mask. It is found that the etching characteristics of the GaN thin film is strongly dependent on the pattern direction by unisotropic property of KOH based solution. When the pattern was aligned to the [$11\bar{2}0$] directions, ($10\bar{1}n$)-facet is revealed constructing V-shaped sidewalls.

  • PDF