• Title/Summary/Keyword: Chemical antigen

Search Result 126, Processing Time 0.025 seconds

Immunogenicity of staphylococcal enterotoxin C mutant antigen in mice and dairy cows (포도상구균 장내 C 형 변이독소 (SEC mutant)의 면역원성에 대한 연구)

  • Chang, Byoung-sun;Joo, Yi-seok;Moon, Jin-san;Seo, Keun-seok;Yang, Soo-jin;Kim, So-hyun;Park, Yong-ho
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.2
    • /
    • pp.177-188
    • /
    • 2001
  • Mastitis is one of the most significant cause of economic loss to the dairy industry. Especially, Staphylococcus aureus is a major contagious mastitis-causing pathogen in dairy cattle. Because of its high transmission rate and resistance to antibiotic therapy, staphylococcal mastitis presents a constant threat to the dairy industry. Staphylococcal enterotoxin C(SEC) produced by S aureus has been known as one of superantigens which are able to stimulate a large proportion of T lymphocytes independently of their antigenic specificity. In this experiment, we have conducted preliminary studies with mice and lactating cows to evaluate the immunogenicity and safety of the experimental vaccine consists of SEC mutant antigen on controlling the bovine mastitis associated with S aureus infections. The average value of somatic cell counts in quarter milk, isolation rate of S aureus were consistently decreased in SEC-SER vaccinated groups, whereas antibody titers were highly increased in SEC-SER vaccinated groups. Peripheral blood were also collected from the lactating cows to determine the proportion of leukocyte subpopulation associated with humoral immunity(HI) and cell mediated immunity(CMI). Proportion of leukocyte subpopulation expressing $BoCD2^+$(total T lymphocyte), $BoCD4^+$(T helper cell), $BoCD8^+$(T cytotoxic/suppressor cell) and NonT/NonB lymphocyte which are involved in CMI in SEC-SER vaccinated groups were decreased for the initial stage after first vaccination and then increased from ten weeks after first vaccination maintaining elevated level till 14 weeks after vaccination. In contrast, proportion of monocyte, MHC class II and B lymphocyte which are associated with the production of primary immune response in SEC-SER vaccinated groups were increased for the initial period and then decreased from ten weeks after first vaccination. We present evidence that vaccination of SEC-SER mutant antigen in lactating cows induced a significant proliferation of bovine T lymphocytes. These results suggest that SEC-SER mutant antigen used in this experiment might be one of potential immunogen in developing innovative vaccine against bovine IMI associated with S aureus. Additional challenge trials should be carried out to evaluate substantial protection against S aureus under the commercial farm conditions.

  • PDF

Characteristics of Constructed SPR (Surface Plasmon Resonance) Sensor System for the Detection of Salmonella and hIgG Antigen-Antibody Reaction. (살모넬라와 면역글로블린(hIgG)의 항원-항체반응 감지를 위한 표면 플라즈몬 공명형 센서시스템의 특성)

  • Um, N.S.;Koh, K.N.;Hahm, S.H.;Kim, J.H.;Lee, S.H.;Kang, S.W.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.263-270
    • /
    • 1998
  • Surface Plasmon Resonance (SPR) sensor system, has rapid response and high sensitivity, can be applicable for detecting reaction times of many biospecific interactions. A SPR sensor system was constructed to detect the antigen-antibody reactions of salmonella and hIgG (human immunoglobulin G). Sensor chips made of gold thin film were used for detecting biological bindings of antigen and antibody reactions. The antigen and antibody reactions for salmonella and hIgG were carried out with various time intervals to observed characteristics of these reactions using SPR sensor system. The resonance angle shift changes were clearly observed at the time of salmonella or hIgG antibody injection into sample cell since each antibody was self-assembled on gold chip surface of the sensor. It was found that the antibodies of salmonella and hIgG reacted with its sensor chip surface in 10 minutes and 60 minutes respectively. And the antigens of both salmonella and hIgG were bound to its antibody within 1 minute.

  • PDF

Improving the Productivity of Single-Chain Fv Antibody Against c-Met by Rearranging the Order of its Variable Domains

  • Kim, Yu-Jin;Neelamegam, Rameshkumar;Heo, Mi-Ae;Edwardraja, Selvakumar;Paik, Hyun-Jong;Lee, Sun-Gu
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1186-1190
    • /
    • 2008
  • Single-chain Fv (scFv) antibody against c-Met is expected to be employed in clinical treatment or imaging of cancer cells owing to the important biological roles of c-Met in the proliferation of malignancies. Here, we show that the productivity of scFv against c-Met in Escherichia coli is significantly influenced by the orientation of its variable domains. We generated anti-c-Met scFv antibodies with two different domain orders (i.e., $V_L$-linker-$V_H$ and $V_H$-linker-$V_L$), expressed them in the cytoplasm of E. coli trx/gor deleted mutant, and compared their specific activities as well as their productivities. Productivity of total and functional anti-c-Met scFv with $V_H/V_L$ orientation was more than five times higher than that with $V_L/V_H$ format. Coexpression of DsbC enhanced the yield of soluble amounts of anti-c-Met scFv protein for both constructs. The purified scFv antibodies of the two different formats exhibited almost the same antigen-binding activities. We also compared the productivities and specific activities of anti-c-Met diabodies with $V_H/V_L$ or $V_L/V_H$ formats and obtained similar results to the case of scFv antibodies.

Polyhydroxyalkanoate Chip for the Specific Immobilization of Recombinant Proteins and Its Applications in Immunodiagnostics

  • Park, Tae-Jung;Park, Jong-Pil;Lee, Seok-Jae;Hong, Hyo-Jeong;Lee, Sang-Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.173-177
    • /
    • 2006
  • In this study, a novel strategy was developed for the highly selective immobilization of proteins, using the polyhydroxyalkanoate (PHA) depolymerase substrate binding domain (SBD) as an active binding domain. In order to determine the appropriacy of this method for immunodiagnostic assays, the single-chain antibody (ScFv) against the hepatitis B virus (HBV) preS2 surface protein and the severe acute respiratory syndrome coronavirus (SARS-CoV) envelope protein (SCVe) were fused to the SBD, then directly immobilized on PH A-coated slides via microspotting. The fluorescence-labeled HBV antigen and the antibody against SCVe were then utilized to examine specific interactions on the PHA-coated surfaces. Fluorescence signals were detected only at the spotted positions, thereby indicating a high degree of affinity and selectivity for their corresponding antigens/antibodies. Furthermore, we detected small amounts of ScFv-SBD (2.7 ng/mL) and SCVe-SBD fusion proteins (0.6ng/mL). Therefore, this microarray platform technology, using PHA and SBD, appears generally appropriate for immunodiagnosis, with no special requirements with regard to synthetic or chemical modification of the biomolecules or the solid surface.

Nanobiocatalyst-Linked Immunosorbent Assay(NBC-LISA) (나노바이오촉매 기반 효소결합면역흡착검사)

  • Lee, Inseon;Hwang, Sang Youn;Kim, Jungbae
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.387-392
    • /
    • 2011
  • Enzymes are being used in various fields due to their unique property of substrate specificity. Enzyme-linked immunosorbent assay(ELISA) has enabled the detection of various antigens by reporting the binding event of antigen and antibody via enzyme-catalyzed reaction. However, the sensitivity improvement of conventional ELISA has been limited because only one enzyme molecule is conjugated to one molecule of antibody. To overcome this limitation and further improve the sensitivity of ELISA, there have been efforts to increase the number ratio of enzymes to antibody. Recently, the nanobiocatalytic approaches, with their successful enzyme stabilization, improved the performance stability as well as sensitivity in a modified protocol of ELISA. The present paper introduces the basic principle of ELISA, and the recent efforts to improve sensitivity and performance stability of ELISA by using the nanobiocatalytic approaches.

Comparative N-Linked Glycan Analysis of Wild-Type and α1,3-Galactosyltransferase Gene Knock-Out Pig Fibroblasts Using Mass Spectrometry Approaches

  • Park, Hae-Min;Kim, Yoon-Woo;Kim, Kyoung-Jin;Kim, Young June;Yang, Yung-Hun;Jin, Jang Mi;Kim, Young Hwan;Kim, Byung-Gee;Shim, Hosup;Kim, Yun-Gon
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.65-74
    • /
    • 2015
  • Carbohydrate antigens expressed on pig cells are considered to be major barriers in pig-to-human xenotransplantation. Even after ${\alpha}1,3$-galactosyltransferase gene knock-out (GalT-KO) pigs are generated, potential non-Gal antigens are still existed. However, to the best of our knowledge there is no extensive study analyzing N-glycans expressed on the GalT-KO pig tissues or cells. Here, we identified and quantified totally 47 N-glycans from wild-type (WT) and GalT-KO pig fibroblasts using mass spectrometry. First, our results confirmed the absence of galactose-alpha-1,3-galactose (${\alpha}$-Gal) residue in the GalT-KO pig cells. Interestingly, we showed that the level of overall fucosylated N-glycans from GalT-KO pig fibroblasts is much higher than from WT pig fibroblasts. Moreover, the relative quantity of the N-glycolylneuraminic acid (NeuGc) antigen is slightly higher in the GalT-KO pigs. Thus, this study will contribute to a better understanding of cellular glycan alterations on GalT-KO pigs for successful xenotransplantation.

Electrochemical Immunosensing of GOx-labeled CRP Antigen on Capture Antibody Monolayer Immobilized on Calixcrown-5 SAMs

  • Jung, Hye-Sook;Song, Kum-Soo;Kim, Tai-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1792-1796
    • /
    • 2007
  • Insulating effects on Au electrode according to the thickness and density of coated materials are well-known. To do electrochemical immunoassay reproducibly the glod electrode would be coated with self-assembled monolayers and antobodies. To get reproducibility, the antobody monolayer should be packed at highest density so that the amount of immobilized antibody at defined area should be the same. The calix[4]crown-5 SAMs could provide the basis for the antibodies to be immobilized reproducibly and at highest density. But the insulating effect would be highest too. We proved that the compactly packed protein monolayers on SAMs inhibited the electron transfer by block the free shuttling of redox molecules. The inhibition was minimized by inserting redox molecules in between the proteins during immobilization process. In this paper, we demonstrated that the calix[4]crown-5 SAMs would provide the protein monolayers with highest density and new method to minimize the insulating effect by inserted redox molecules in between the compactly packed protein monolayers.

Detection of PCB77 by Indirect Competitive Enzyme-linked Immunosorbent Assay in Sea Sediment Samples

  • Chen, Han-Yu;Zhuang, Hui-Sheng;Yang, Guang-Xin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.922-926
    • /
    • 2013
  • 3,3',4,4'-Tetrachlorobiphenyl (IUPAC PCB77) is one of seven indicative polychlorinated biphenyls (PCBs) in the surface sediments. The current study presents a novel polyclonal antibody for the determination of the PCB77 using indirect competitive enzyme-linked immunosorbent assay. Under optimum conditions, PCB77 was determined within the concentration range of 0.01-100 ${\mu}g\;L^{-1}$, with a detection limit of 0.057 ${\mu}g\;L^{-1}$. The assays were tested for their cross-reactivity profiles using 3 selected congeners and 4 Aroclor products. The assays were highly specific for coplanar PCB congeners, but less specific for Aroclor1248. The spiked recoveries from five sediment samples were 86%-114% for PCB77 from ELISA, which were satisfactory. The current study demonstrated that the developed antiserum and immunoassay procedure can be used to detect PCB77 in environmental samples. The results of the sediment analysis were confirmed by conventional GC/ECD.

Amperometric Immunosensor for Myeloperoxidase in Human Serum Based on a Multi-wall Carbon Nanotubes-Ionic Liquid-Cerium Dioxide Film-modified Electrode

  • Lu, Lingsong;Liu, Bei;Liu, Chenggui;Xie, Guoming
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3259-3264
    • /
    • 2010
  • A label-free amperometric immunosensor has been proposed for the detection of myeloperoxidase (MPO) in human serum. To fabricate such an immunosensor, a composite film consisting of N,N-dimethylformamide (DMF), multiwall carbon nanotubes (MWCNTs) and 1-ethyl-3-methyl imidazolium tetrafluoroborate ($EMIMBF_4$) suspension was initially formed on a glassy carbon electrode (GCE). Then cerium dioxide ($CeO_2$) dispersed by chitosan was coated on the GCE. After that, MPO antibodies (anti-MPO) were attached onto the nano$CeO_2$ surface. With a noncompetitive immunoassay format, the antibody-antigen complex formed between the immobilized anti-MPO and MPO in sample solution. The immunosensor was characterized by cyclic voltammetry, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The factors influencing the performance of the immunosensor were studied in detail. Under optimal conditions, the current change before and after the immunoreaction was proportional to MPO concentration in the range of 5 to $300\;ng\;mL^{-1}$ with a detection limit of $0.2\;ng\;mL^{-1}$.

Development of an Enzyme-Linked Immunosorbent Assay for the Organophosphorus Fungicide Tolclofos-methyl

  • Park, Kyung-Yi;Park, Won-Chul;Kim, Yoo-Jung;Lee, Yong-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.334-338
    • /
    • 2003
  • A simple synthetic method for haptens of organophosphorus (OP) pesticides with a spacer arm (aminocarboxylic acid) attached at the pesticide thiophosphate group was developed and was applied to the synthesis of haptens for the OP fungicide tolclofos-methyl. Using the haptens, a selective enzyme-linked immunosorbent assay (ELISA) for tolclofos-methyl was developed. One of the haptens was coupled to BSA to use as an immunogen. Rabbits were immunized with this conjugate to obtain polyclonal antibodies to tolclofos-methyl. The antisera were screened against another hapten coupled to ovalbumin (OVA). Using the serum with highest specificity, an antigen-coated ELISA was developed, which showed an $IC_{50}$ of 160 ng/mL with the detection limit of 20 ng/mL. The antibodies showed negligible cross-reactivity with other OP pesticides. An antibody-coated ELISA was also developed, which showed an $IC_{50}$ of 410 ng/mL with a detection limit of 130 ng/mL.