• Title/Summary/Keyword: Chemical Reactor

Search Result 1,549, Processing Time 0.03 seconds

Removal of CO2 in Syngas using Li2ZrO3 (Li2ZrO3를 이용한 합성가스내의 CO2 제거)

  • Park, Joo-Won;Kang, Dong-Hwan;Yoo, Kyung-Seun;Lee, Jae-Goo;Kim, Jae-Ho;Han, Choon
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.250-254
    • /
    • 2006
  • Reaction of $CO_2$ with $Li_{2}ZrO_{3}$ has been investigated in a TGA and the effects of $H_{2}$ and CO on the removal of $CO_{2}$ using $Li_{2}ZrO_{3}$ were evaluated in a packed bed reactor. The initial rate of $CO_{2}$ removal reaction of $Li_{2}ZrO_{3}$ increased with the increase of gas flow rate up to 100 mL/min and then was maintained, which implied the disappearance of the gas film resistance. The reaction of $CO_{2}$ with $Li_{2}ZrO_{3}$ took place as the first order and the range of optimum temperature was found to be about $500{\sim}600^{\circ}C$. XRD and SEM analysis showed the formation of crystalline $Li_{2}ZrO_{3}$ and porous $Li_{2}ZrO_{3}$/$ZrO_{2}$. The presence of $H_{2}$ did not affect the adsorption of $CO_2$ with $Li_2ZrO_3$. On the other hand, CO inhibited the sorption of $CO_{2}$ into $Li_{2}CO_{3}$(L) on $Li_{2}ZrO_{3}$.

Tetramethyl orthosilicate(TMOS) Synthesis by the Copper-Catalyzed Reaction of the Metallic Silicon with Methanol (I) - Effect of the Manufacturing Condition and the Composition of Contact Mass on TMOS Synthesis - (구리 촉매하에서 규소와 메탄올의 반응에 의한 Tetramethyl orthosilicate (TMOS) 합성(제1보) - 접촉물질의 제조방법 및 구성성분이 TMOS 합성에 미치는 영향 -)

  • Soh, Soon-Young;Han, Kee-Doo;Won, Ho-Youn;Chun, Yong-Jin;Lee, Bum-Jae;Yang, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.252-258
    • /
    • 1999
  • Tetramethyl orthosilicate (TMOS) was obtained by the direct synthesis of methanol with metallic silicon including copper compound as a catalyst and zinc compound as a promoter. The effects of the preheating temperature and the preparation method of the contact mass on TMOS synthesis were investigated. The composition effects of the contact mass which was composed of metallic silicon with copper catalyst and various metallic halide promoters including Zn, Sn or Cd compound were studied also. The best performance on TMOS synthesis was observed on a mixed bed reactor containing metallic silicon preheated with CuCl as a catalyst and $ZnCl_2$ as a promoter. When Cu/Si = 7 wt %, Zn/Cu = 7 wt % was mixed in a slurry phase and activated into contact mass at $380^{\circ}C$, the average selectivity was 87.2% in the silicon consumption of 69.2% at $220^{\circ}C$.

  • PDF

Development of Continuous Clean Bioprocess for Kasugamycin Production (Kasugamycin 생산을 위한 연속 청정생물공정 개발)

  • Kim, Chang Joon;Park, Sun Ok;Chang, Yong Keun;Chun, Gie-Taek;Lee, Jong-Dae;Kim, Sangyong
    • Clean Technology
    • /
    • v.4 no.1
    • /
    • pp.45-59
    • /
    • 1998
  • Continuous immobilized-cell culture was carried out for the production of kasugamycin, a secondary metabolite by a filamentous bacteria, Streptomyces kasugaensis, with an intention of reducing waste generation. A sporulation medium was developed for production of bulk amounts of spores, and the spores were entrapped into celite biosupports for immobilization. It was possible to effectively keep the immobilized-cells inside the reactor during the continuous culture by an efficient immobilized cell separator of decantor type on the outlet of the fermentor. Using this continuous immobilized-cell fermentor system, we investigated the effects of feed substrate and phosphate concentrations on kasugamycin production and chemical oxygen demand(COD). Comparing with the conventional suspended-cell batch culture, the kasugamycin productivity was observed to increase by 2.5 times, whereas COD per unit kasugamycin production decreased by 2.3 times in the continuous immobilized-cell culture. Based on these results, the continuous immobilized-cell system was considered to be a cleaner bioprocess than the conventional batch suspended-cell system.

  • PDF

Optimization of Esterification of Jatropha Oil by Amberlyst-15 and Biodiesel Production (Amberlyst-15를 이용한 자트로파 오일의 에스테르화 반응 최적화 및 바이오디젤 생산)

  • Choi, Jong-Doo;Kim, Deog-Keun;Park, Ji-Yeon;Rhee, Young-Woo;Lee, Jin-Suk
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.194-199
    • /
    • 2008
  • In this study, the effective method to esterify the free fatty acids in jatropha oil was examined. Compared to other plant oils, the acid value of jatropha oil was remarkably high, 11.5 mgKOH/g. So direct transesterification by a base catalyst was not suitable for the oil. After the free fatty acids were esterified with methanol, jatropha oil was transesterified. The activities of four solid acid catalysts were tested and Amberlyst-15 showed the best activity for the esterification. After constructing the experiment matrix based on RSM and analyzing the statistical data, the optimal esterification conditions were determined to be 6.79% of methanol and 17.14% of Amberlyst-15. After the pretreatment, jatropha biodiesel was produced by the transesterification using KOH in a pressurized batch reactor. Jatropha biodiesel produced could meet the major specifications of Korean biodiesel standards; 97.35% of FAME, 8.17 h of oxidation stability, 0.125% of total glycerol and $0^{\circ}C$ of CFPP.

The Influence of Plasma Surface Modification on Frictional Property of Natural Rubber Vulcanizates

  • Nah, C.;Kim, D.H.;Mathew, G.;Jeon, D.J.;Jurkowski, B.;Jurkowska, B.
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.12-22
    • /
    • 2004
  • The plasma surface modification of natural rubber vulcanizate was carried out using chlorodifluoromethane in a radio-frequency (13.56 MHz) electrodeless bell type plasma reactor. The modification was qualitatively assessed by Fourier transform infrared spectroscopy. The frictional force of the plasma-treated surface was found to decrease with the time of plasma treatment. An increase in the surface polarity, as evidenced by the decrease in contact angle of a sessile drop of water and ethylene glycol on the natural rubber vulcanizate surface, was noted with the plasma modification. In the case of similar plasma treatment of glass surface, only a reduction in the polarity was observed. The use of geometric and harmonic mean methods was found to be useful to evaluate the London dispersive and specific components of surface free energy. Irrespective of the method used for evaluation, an increasing trend in the surface free energy was noted with increasing plasma treatment time. However, the harmonic mean method yielded comparatively higher values of surface free energy than the geometric mean method. The plasma surface modification was found to vary the frictional coefficient by influencing the interfacial, hysteresis and viscous components of friction in opposing dual manners.

Characteristics of Aqueous Ammonia-CO2 reaction at Regeneration Condition of High Temperature and Pressure (고압고온 재생조건에서의 암모니아수-CO2 반응특성)

  • Kim, Yun Hee;Yi, Kwang Bok;Park, Sung Youl;Ko, Chang Hyun;Park, Jong-Ho;Beum, Hee Tae;Han, Myungwan;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.253-258
    • /
    • 2010
  • In the field of the $CO_2$ absorption process using aqueous ammonia, the effects of regeneration pressure and temperature on $CO_2$ absorption performances of the aqueous ammonia were investigated. The absorbents were prepared by dissolving ammonium carbonate solid in water to grant the resulted solution 0.5 $CO_2$ loading ($mol\;CO_2/mol\;NH_3$) and various ammonia concentration (14, 20, 26 and 32 wt%). As-prepared absorbents were regenerated at high pressure and temperature (over $120^{\circ}C$ and 6 bar) before the absorption test. The absorption test was carried out by injecting the simulated gas that contains 12 vol% of $CO_2$ into a bubbling reactor. The introduction of 26 wt% of the ammonia concentration for $CO_2$ absorption test resulted in the higher absorption capacities than other experimental conditions. In particular, when the absorbents with 26 wt% of the ammonia were regenerated at $150^{\circ}C$ and 14 bar, the highest absorption capacity, $45ml\;CO_2/g$, was obtained. According to the analysis of absorbents using acid-base titration, the ammonia loss during the regeneration of the absorbents with a fixed ammonia concentration decreased as the regeneration pressure increased, while it increased as the regeneration temperature increased. In the condition of fixed regeneration pressure and temperature, as expected, the ammonia loss increased as the ammonia concentration increased. The measured $CO_2$ loadings and ammonia concentrations of absorbents were compared to the values calculated by Electrolyte NRTL model in Aspen Plus.

A Study on Carbon Dioxide Capture Performance of KOH Aqueous Solution via Chemical Absorption (화학 흡수를 이용한 KOH 수용액의 이산화탄소 포집 성능에 관한 연구)

  • Yoo, Mi-Ran;Han, Sang-Jun;Shin, Ji-Yoon;Wee, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.55-62
    • /
    • 2012
  • The present paper investigates the performance of the KOH aqueous solution as an absorbent to capture carbon dioxide ($CO_2$). The chemical absorption was carried out according to consecutive reactions that are generated in the order of $K_2CO_3$ and $KHCO_3$. The overall absorption was completed with following the physical absorption. When the absorption was conducted with the KOH as the limiting reactants in batch a reactor, $K_2CO_3$ production rate was the 1st order reaction for $OH^-$. However, $KHCO_3$ generation reaction was independent of the $CO_3^{2-}$ concentration and the rate was calculated to be $0.18gCO_2/min$ for all KOH absorbents, which is the same value of the reaction rate using $K_2CO_3$ aqueous solution as the absorbents. The overall $CO_2$ capture ratio of the 5% KOH absorbent was estimated to be 19% and the individual value in section 1 and 2 was 57 and 12%, respectively. The amount of $CO_2$ absorbed in the solution was very slightly less than the theoretical value, which was ascribed to the side reaction that produces $K_2CO_3{\cdot}KHCO_3{\cdot}1.5H_2O$ during the reaction and the consequent diminish in $CO_2$ absorption in the KOH solution.

Development of a Monitoring System for Batch Gas Manufacturing Processes (회분식 가스 제조 공정용 실시간 감시 시스템의 개발)

  • Lee Young-Hak;Lee Don-Yong;Han Chong-hun
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.3
    • /
    • pp.54-59
    • /
    • 1998
  • As distributed control systems (DCS) and plant information systems (PIS) are introduced into gas industries, process monitoring systems based on process data have attracted significant interests. However, these technologies have not been fully due to strong nonlinearities of batch processes. The multiway principal component analysis, which has been recently developed, has solved these problems and has been widely used in the industries. However, the lack of statistical background of process operators has been one of major obstacles for maximum utilization of the technology This paper introduces a real time monitoring system for batch gas manufacturing processes that offers a variety of tools that operators can understand and use without serious difficulties. The proposed integrated system covers the whole spectrum of monitoring and diagnosis that include data collection, monitoring and diagnosis. The developed system has been verified to be very effective for monitoring and diagnosis using its application to the construction of monitoring system for a typical industrial batch reactor.

  • PDF

Characteristics of Dust Explosion in Dioctyl Terephthalic Acid Manufacturing Process (디옥틸테레프탈산 제조공정에서 분진폭발 특성에 관한 연구)

  • Lee, Chang Jin;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.790-803
    • /
    • 2019
  • The dioctyl terephthalic acid (DOTP) process produces plastic plasticizers by esterification of terephthalic acid with powder in the form of octanol. In this study, the dust explosion characteristics of terephthalic acid directly injected into the manhole in the form of powder in the presence of flammable solvent or vapor in the reactor of this process were investigated. Dust particle size and particle size distribution dust characteristics were investigated, and pyrolysis characteristics of dust were investigated to estimate fire and explosion characteristics and ignition temperature. Also, the minimum ignition energy experiment was performed to evaluate the explosion sensitivity. As a result, the average particle size of terephthalic acid powder was $143.433{\mu}m$. From the thermal analysis carried out under these particle size and particle size distribution conditions, the ignition temperature of the dust was about $253^{\circ}C$. The lower explosive limit (LEL) of the terephthalic acid was determined to be $50g/m^3$. The minimum ignition energy (MIE) for explosion sensitivity is (10 < MIE < 300) mJ, and the estimated minimum ignition energy (Es) based on the ignition probability is 210 mJ. The maximum explosion pressure ($P_{max}$) and the maximum explosion pressure rise rate $({\frac{dP}{dt}})_{max}$ of terephthalic acid dust were 7.1 bar and 511 bar/s, respectively. The dust explosion index (Kst) was 139 mbar/s, corresponding to the dust explosion grade St 1.

Development of Chemical and Biological Decontamination Technology for Radioactive Liquid Wastes and Feasibility Study for Application to Liquid Waste Management System in APR1400 (액체방사성폐기물에 대한 화학적, 생물학적 제염기술 개발 및 APR1400 액체폐기물관리계통 적용을 위한 타당성 연구)

  • Son, YoungJu;Lee, Seung Yeop;Jung, JaeYeon;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.59-73
    • /
    • 2019
  • A decontamination technology for radioactive liquid wastes was newly developed and hypothetically applied to the liquid waste management system (LWMS) of the nuclear power plant (NPP) to evaluate its decontamination efficacy for the purpose of the fundamental reduction of spent resins. The basic principle of the developed technology is to convert major radionuclide ions in the liquid wastes into inorganic crystal minerals via chemical or biological techniques. In a laboratory batch experiment, the biological method selectively removed more than 80% of cesium within 24 hours, and the chemical method removed more than 95% of cesium. Other major nuclides (Co, Ni, Fe, Cr, Mn, Eu), which are commonly present in nuclear radioactive liquid wastes, were effectively scavenged by more than 99%. We have designed a module including the new technology that could be hypothetically installed between the reverse osmosis (R/O) package and the organic ion-exchange resin in the LWMS of the APR1400 reactor. From a technical evaluation for the virtual installation, we found that more than 90% of major radionuclides in the radioactive liquid wastes were selectively removed, resulting in a large volume reduction of spent resins. This means that if the new technology is commercialized in the future, it could possibly provide drastic cost reduction and significant extension of the life of resins in the management of spent resins, consequently leading to delay the saturation time of the Wolsong repository.