• Title/Summary/Keyword: Chemical Reactor

Search Result 1,549, Processing Time 0.028 seconds

Tubular reactor design for the oxidative dehydrogenation of butene using computational fluid dynamics (CFD) modeling

  • Mendoza, Joseph Albert;Hwang, Sungwon
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2157-2163
    • /
    • 2018
  • Catalytic reactors have been essential for chemical engineering process, and different designs of reactors in multi-scales have been previously studied. Computational fluid dynamics (CFD) utilized in reactor designs have been gaining interest due to its cost-effective advantage in designing the actual reactors before its construction. In this work, butadiene synthesis via oxidative dehydrogenation (ODH) of n-butene using tubular reactor was used as a case study in the CFD model. The effects of coolant and reactor diameter were investigated in assessing the reactor performance. Based on the results of the CFD model, the conversion and selectivity were 86.5% and 59.5% respectively in a fixed bed reactor under adiabatic condition. When coolants were used in a tubular reactor, reactor temperature profiles showed that solar salt had lower temperature gradients inside the reactor than the cooling water. Furthermore, higher conversion (90.9%) and selectivity (90.5%) were observed for solar salt as compared to the cooling water (88.4% for conversion and 86.3% for selectivity). Meanwhile, reducing the reactor diameter resulted in smaller temperature gradients with higher conversion and selectivity.

Heat Transfer Characteristic of the Spiral Type Solar Chemical Reactor (수치해석을 통한 Spiral 형상 화학 반응기의 열전달 특성)

  • Jung, Young-Guk;Lee, Jin-Gyu;Lee, Ju-Han;Seo, Tae-Beom
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.1
    • /
    • pp.40-48
    • /
    • 2010
  • The purpose of the research is to develop the high performance solar chemical reactor for producing hydrogen using steam reforming reaction of methane. A specific shape chemical reactor is suggested : spiral type reactor. The reactor is installed on the dish-type solar thermal system of Inha University. The temperatures, $CH_4$ conversion rates, and Hz proportion are measured. At specific condition, $CH_4$ conversion rates of the spiral type reactor are about 91%, and Hz proportion are about 66%. The spiral type reactor gives reasonably good performance without any problems caused by highly concentrated solar radiation.

Analysis of Heat Transfer Performance for a Solar Chemical Reactor (고온 태양열 화학 반응기의 열전달 성능 분석)

  • Jung, Young-Guk;Lee, Ju-Han;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.55-60
    • /
    • 2009
  • The purpose of the research is to develop the high performance solar chemical reactor for producing hydrogen using steam reforming reaction of methane. A specific shape chemical reactor is suggested: spiral type reactor. The reactor is installed on the dish-type solar thermal system of Inha University. The temperatures, $CH_4$ conversion rates are measured. At specific condition, $CH_4$ conversion rates of the spiral type reactor are about 92%. The spiral type reactor gives reasonably good performance without any problems caused by highly concentrated solar radiation.

  • PDF

A Comparison of Efficiency of Decolorizing Rhodamine B using Lab-Scale Photocatalytic Reactors : Slurry Reactor, IWCR and PFBR

  • Na, Young-Soo;Lee, Tae-Kyung;Lee, Song-Woo;Lee, Chang-Han;Kim, Do-Han;Park, Young-Seek;Song, Seung-Koo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_4
    • /
    • pp.157-164
    • /
    • 2001
  • The performance of fluidized-bed reactor with Photomedia, immobilized TiO$_2$ onto the porous ceramic ball using a sol-gel method has been studied in this work. A simple model substrate, dilute Rhodamine B (RhB), was decolorized at room temperature. For the purpose of comparison, the slurry reactor and the Inner Wall Coated Reactor (IWCR) were used. The aim of this work was to develop the photocatalytic fluidized bed reactor (PFBR) through contrasting the photodegradability of various reactors such as the TiO$_2$slurry reactor, the inner-wall coated reactor (IWCR). In this study, the RhB was decolorized in three types of reactor. Even though the reaction rate constant of PFBR was lower than that of slurry reactor, PFBR had the advantages of preventing the wash-out of photocatalyst, so it can be operated continuously.

  • PDF

ANALYSIS OF THE FIXED BED REACTOR FOR DME SYNTHESIS

  • Song, Dae-Sung;Ahn, Sung-Joon;Cho, Won-Jun;Park, Dal-Keun;Yoon, En-Sup
    • 한국가스학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.27-32
    • /
    • 2007
  • Dimethyl Ether (DME, $CH_3OCH_3$) is the simplest ether and is considered as one of the leading candidates in the quest for a substitute fur petroleum-based fuels. In this work, we analyzed the one-step synthesis of DME in a shell and tube type fixed bed reactor and carried out a simulation with a one-dimensional, steady state model of a heterogeneous catalyst bed, while taking into consideration the heat and mass transfer between the catalyst pellets and reactants gas and the effectiveness factor of the catalysts, together with the reactor cooling through the reactor tube wall. The reactor simulation was carried out under steady state condition and we compared the simulation results with the experimental data obtained from operations of a pilot-scale reactor and found good agreement between them.

  • PDF

Property Control in a Continuous MMA Polymerization Reactor using EKF based Nonlinear Model Predictive Controller

  • Ahn, Sung-Mo;Park, Myung-June;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.468-473
    • /
    • 1998
  • A mathematical model was developed for a continuous re-actor in which free radical polymerization of methyl methacrylate (MMA) occurred. Elementary reactions considered in this study were initiation, propagation, termination, and chain transfers to monomer and solvent. The reactor model took into account the density change of the reactor contents and the gel effect. A control system was designed for a continuous reactor using extended Kalman filter (EKF) based non-linear model predictive controller (NLMPC) to control the conversion and the weight average molecular weight of the polymer product. Control input variables were the jacket inlet temperature and the feed flow rate. For the purpose of validation of the control strategy, on-line digital control experiments were conducted with densitometer and viscometer for the measurement of the polymer properties. Despite the com-plex and nonlinear features of the polymerization reaction system, the EKF based NLMPC performed quite satisfactorily for the property control of the continuous polymerization reactor.

  • PDF

The Application of Gas-Solid Reactor Model: Consideration of Reduction reaction model (기체 고체 반응기 모형의 응용: 환원로 반응 모형 고찰)

  • Eum, Minje;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.79-82
    • /
    • 2012
  • The gas-solid reactor, such as rotary kiln, sintering bed, incinerator and CFB boiler, is the one of most widely used industrial reactors for contacting gases and solids. the gas-solid reactor are mainly used for drying, calcining and reducing solid materials. In the gas-solid reactor, heat is supplied to the outside of the wall or inside of the reactor. The heat transfer in gas-solid reactor encompasses all the modes of transport mechanisms, that is, conduction, convection and radiation. The chemical reactions occurring in the bed are driven by energy supplied by the heat transfer. This paper deal with the effect of heat transfer and chemical reaction in the gas-solid reactor.

  • PDF

Particle Contamination in PCVD Reactor for Semiconductor Processing (반도체 제조용 PCVD 반응기에서의 미립자 오염)

  • Kim, Dong-Joo;Kim, Kyo-Seon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1492-1494
    • /
    • 1996
  • We have studied the generation, growth and behavior of chemical species and particles in silane PCVD. We included the plasma chemistry of silane, particle nucleation by homogeneous formation, acrosol dynamics and transport phenomena of chemical species and particles. The concentration profile of chemical species and particles were shown as a function of reactor length. The effects of process variables such as reactor pressure, total gas flow rate and electrical field strength on the behavior of chemical species and particles were analyzed.

  • PDF

Performance Analysis of Heat Transfer Characteristic and Hydrogen Product for Dish Type Solar Chemical Reactor (접시형 고온 태양열 화학 반응기의 열전달 및 수소생산 성능 분석)

  • Yang, Seung-Bok;Go, Man-Seok;O, Sang-Jun;Seo, Tae-Beom
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.774-779
    • /
    • 2009
  • The purpose of this research is to develop the high performance of solar chemical reactor for producing hydrogen by methane reforming reaction with steam. Two shape of chemical reactor is suggested: first type is filled with porous material and second type is spiral type. These reactors is installed on the dish-type thermal system of Inha University, Inha Dish-1. Performance analysis of these two reactors is conducted from getting methane conversion.

  • PDF

Water Gas Shift Reaction in Palladium/Ceramic Membrane Reactor (팔라듐/세라믹 막반응기를 이용한 수성가스전환반응)

  • Choi, Tae-Ho;So, Won-Wook;Kim, Kwang-Je;Moon, Sang-Jin;Hyung, Gi-Woo;Chough, Sung Hyo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.282-287
    • /
    • 2005
  • Palladium membranes, which are permselective to hydrogen separation, were used for the hydrogen purification and in membrane reactors for improving conversions by shifting the reaction equilibrium. Palladium/ceramic composite membranes were prepared by electroless plating technique and then etched in titanium chloride ($TiCl_4$) as a post treatment to enhance the membrane's durability. These membranes were used for membrane reactors in water gas shift (WGS) reaction. CO conversions for the membrane reactor were obtained according to experimental parameters and compared to the traditional reactor without a palladium/ceramic membrane. As a result, CO conversion using palladium membrane reactor at an appropriate condition was over 20~25% greater than that without the membrane reactor. The stability in the long-term test of up to 120 h for WGS reaction with the membrane reactor was good without the degredation of CO conversion.