Browse > Article

Water Gas Shift Reaction in Palladium/Ceramic Membrane Reactor  

Choi, Tae-Ho (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology)
So, Won-Wook (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology)
Kim, Kwang-Je (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology)
Moon, Sang-Jin (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology)
Hyung, Gi-Woo (School of Chemical Engineering, Chonnam National University)
Chough, Sung Hyo (School of Chemical Engineering, Chonnam National University)
Publication Information
Applied Chemistry for Engineering / v.16, no.2, 2005 , pp. 282-287 More about this Journal
Abstract
Palladium membranes, which are permselective to hydrogen separation, were used for the hydrogen purification and in membrane reactors for improving conversions by shifting the reaction equilibrium. Palladium/ceramic composite membranes were prepared by electroless plating technique and then etched in titanium chloride ($TiCl_4$) as a post treatment to enhance the membrane's durability. These membranes were used for membrane reactors in water gas shift (WGS) reaction. CO conversions for the membrane reactor were obtained according to experimental parameters and compared to the traditional reactor without a palladium/ceramic membrane. As a result, CO conversion using palladium membrane reactor at an appropriate condition was over 20~25% greater than that without the membrane reactor. The stability in the long-term test of up to 120 h for WGS reaction with the membrane reactor was good without the degredation of CO conversion.
Keywords
water gas shift reaction; palladium membrane reactor; hydrogen separation; ceramic membrane;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Chai, M. Machida, K. Eguchi, and H. Arai, Appl. Catal. A, 110, 239 (1994)   DOI   ScienceOn
2 A. Criscouli, A. Basile, and E. Drioli, Catal. Today, 56, 53 (2000)   DOI
3 N. Itoh, E. Tamura, S. Hara, T. Takahashi, A. Shono, K. Satoh, and T. Namba, Catal. Today, 82, 119 (2003)   DOI   ScienceOn
4 A. Basile, A. Criscuoli, F. Santella, and E. Drioli, Gas. Sep. Purif., 10, 243 (1996)   DOI   ScienceOn
5 A. Basile, L. Paturzo, and F. Lagana, Catal. Today, 67, 65 (2001)   DOI   ScienceOn
6 A. Basile, G. Chiapetta, S. Tosti, and V. Violante, Sep. Purif. Tech., 25, 549 (200 1)   DOI   ScienceOn
7 Y. She, J. Han, and Y. H. Ma, Catal. Today, 67, 43 (2001)   DOI
8 S. E. Nam and K. H. Lee, J. Korean Ind. Eng. Chem., 11, 113 (2000)
9 J. Munera, S. Irusta, L. Cornaglia, and E. Lombardo, Appl. Catal. A, 245, 383 (2003)   DOI   ScienceOn
10 A. Basile, E. Drioli, F. Santella, V. Violante, G. Capannelli, and G. Vitulli, Gas. Sep. Purif., 10, 53 (1996)   DOI   ScienceOn
11 V. Violante, A. Basile, and E. Drioli, Fus. Eng. Des., 30, 217 (1995)   DOI   ScienceOn
12 G. Barbieri and F. P. D. Maio, Ind. Eng. Chem. Res., 36, 2121 (1997)   DOI   ScienceOn
13 P. S. Maiya, T. J. Anderson, R. L Mieville, T. J. Dusek, J. J. Picciolo, and U. Balachandran, Appl. Catal. A, 196, 65 (2000)   DOI   ScienceOn
14 A. S. Damle, S. K. Gangwal, and V. K. Venkataraman, Gas Sep. Purif., 8, 101 (1994)   DOI   ScienceOn
15 S. Uemiya, N. Sato, H. Ando, and E. Kikuchi, Ind. Eng. Chem. Res., 30, 585 (1991)   DOI
16 J. P. Collins and J. D. Way, Ind. Eng. Chem. Res., 32, 3006 ( 1993)   DOI   ScienceOn