Browse > Article
http://dx.doi.org/10.1007/s11814-018-0143-4

Tubular reactor design for the oxidative dehydrogenation of butene using computational fluid dynamics (CFD) modeling  

Mendoza, Joseph Albert (Graduate School of Chemistry and Chemical Engineering, Inha University)
Hwang, Sungwon (Graduate School of Chemistry and Chemical Engineering, Inha University)
Publication Information
Korean Journal of Chemical Engineering / v.35, no.11, 2018 , pp. 2157-2163 More about this Journal
Abstract
Catalytic reactors have been essential for chemical engineering process, and different designs of reactors in multi-scales have been previously studied. Computational fluid dynamics (CFD) utilized in reactor designs have been gaining interest due to its cost-effective advantage in designing the actual reactors before its construction. In this work, butadiene synthesis via oxidative dehydrogenation (ODH) of n-butene using tubular reactor was used as a case study in the CFD model. The effects of coolant and reactor diameter were investigated in assessing the reactor performance. Based on the results of the CFD model, the conversion and selectivity were 86.5% and 59.5% respectively in a fixed bed reactor under adiabatic condition. When coolants were used in a tubular reactor, reactor temperature profiles showed that solar salt had lower temperature gradients inside the reactor than the cooling water. Furthermore, higher conversion (90.9%) and selectivity (90.5%) were observed for solar salt as compared to the cooling water (88.4% for conversion and 86.3% for selectivity). Meanwhile, reducing the reactor diameter resulted in smaller temperature gradients with higher conversion and selectivity.
Keywords
Catalysis; Computer Modelling; Heat Transfer; Kinetics; Reactor Design;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.-H. Park and C.-H. Shin, J. Ind. Eng. Chem., 21, 683 (2015).   DOI
2 J.-H. Park, H. Noh, J. W. Park, K. H. Row, K. D. Jung and C.-H. Shin, Res. Chem. Intermed., 37, 1125 (2011).   DOI
3 J. Rischard, R. Franz, C. Antinori and O. Deutschmann, AIChE J., 63, 43 (2017).   DOI
4 H. Lee, J. C. Jung, H. Kim, Y.-M. Chung, T. J. Kim, S. J. Lee, S.-H. Oh, Y. S. Kim and I. K. Song, Catal. Commun., 9, 1137 (2008).   DOI
5 E. Hong, J.-H. Park and C.-H. Shin, Catal. Surv. Asia, 20, 23 (2016).   DOI
6 K. Huang, L. Wang, S. Lin, Y. Xu and D. Wu, J. Taiwan Inst. Chem. Eng., 63, 61 (2016).   DOI
7 J.-H. Park and C.-H. Shin, Appl. Catal., A, 495, 1 (2015).   DOI
8 W. Yan, Q. Y. Kouk, J. Luo, Y. Liu and A. Borgna, Catal. Commun., 46, 208 (2014).   DOI
9 J. H. Zhang, Z. B. Wang, H. Zhao, Y. Y. Tian, H. H. Shan and C. H. Yang, Appl. Petrochem. Res., 5, 255 (2015).   DOI
10 S. Park, Y. Lee, G. Kim and S. Hwang, Korean J. Chem. Eng., 33, 3417 (2016).   DOI
11 T. Ren, M. K. Patel and K. Blok, Energy, 33, 817 (2008).
12 J. S. Sterrett and H. G. McIlvried, Ind. Eng. Chem. Process Des. Dev., 13, 54 (1974).   DOI
13 E. V. Makshina, M. Dusselier, W. Janssens, J. Degreve, P. A. Jacobs and B. F. Sels, Chem. Soc. Rev., 43, 7917 (2014).   DOI
14 W. Xingan and L. Huiqin, Ind. Eng. Chem. Res., 35, 2570 (1996).   DOI
15 F. J. Dumez and G. F. Froment, Ind. Eng. Chem. Process Des. Dev., 15, 291 (1976).   DOI
16 D. L. Trimm and D. S. Gabbay, Trans. Faraday Soc., 67, 2782 (1971).   DOI
17 H. Asadi-Saghandi and J. Karimi-Sabet, Korean J. Chem. Eng., 34, 1905 (2017).   DOI
18 J.-H. Park and C.-H. Shin, Korean J. Chem. Eng., 33, 823 (2016).   DOI
19 A. Heidari and S. H. Hashemabadi, J. Taiwan Inst. Chem. Eng., 45, 1389 (2014).   DOI
20 E. J. Hukkanen, M. J. Rangitsch and P. M. Witt, Ind. Eng. Chem. Res., 52, 15437 (2013).   DOI
21 R. I. Singh, A. Brink and M. Hupa, Appl. Therm. Eng., 52, 585 (2013).   DOI
22 L. Tian, G. Hu, W. Du and F. Qian, Can. J. Chem. Eng., 94, 2427 (2016).   DOI
23 K. Huang, S. Lin, J. Wang and Z. Luo, J. Ind. Eng. Chem., 29, 172 (2015).   DOI
24 J. T. Cornelissen, F. Taghipour, R. Escudie, N. Ellis and J. R. Grace, Chem. Eng. Sci., 62, 6334 (2007).   DOI
25 X. Liu, S. Hu, Y. Jiang and J. Li, Chem. Eng. J., 278, 492 (2015).   DOI
26 A. Bakshi, C. Altantzis, L. R. Glicksman and A. F. Ghoniem, Powder Technol., 316, 500 (2017).   DOI
27 K. M. Wgialla, A. M. Helal and S. S. E. H. Elnashaie, Math. Comput. Model., 15, 17 (1991).
28 Z. Zhai, X. Wang, R. Licht and A. T. Bell, J. Catal., 325, 87 (2015).   DOI
29 R. Serrano-Lopez, J. Fradera and S. Cuesta-Lopez, Chem. Eng. Process., 73, 87 (2013)   DOI
30 R. I. Rothenberg and J. M. Smith, AIChE J., 12, 213 (1966).   DOI