• 제목/요약/키워드: Chemical Plating

검색결과 260건 처리시간 0.026초

비시안 무전해 Au 도금의 석출거동에 미치는 하지층 무전해 Ni-P 도금 조건의 영향 (Effect of underlayer electroless Ni-P plating on deposition behavior of cyanide-free electroless Au plating)

  • 김동현;한재호
    • 한국표면공학회지
    • /
    • 제55권5호
    • /
    • pp.299-307
    • /
    • 2022
  • Gold plating is used as a coating of connector in printed circuit boards, ceramic integrated circuit packages, semiconductor devices and so on, because the film has excellent electric conductivity, solderability and chemical properties such as durability to acid and other chemicals. In most cases, internal connection between device and package and external terminals for connecting packaging and printed circuit board are electroless Ni-P plating followed by immersion Au plating (ENIG) to ensure connection reliability. The deposition behavior and film properties of electroless Au plating are affected by P content, grain size and mixed impurity components in the electroless Ni-P alloy film used as the underlayer plating. In this study, the correlation between electroless nickel plating used as a underlayer layer and cyanide-free electroless Au plating using thiomalic acid as a complexing agent and aminoethanethiol as a reducing agent was investigated.

니켈 표면처리공정에서 전류밀도 효과분석 (Effect of Current Density on Nickel Surface Treatment Process)

  • 김용운;정구형;홍인권
    • 공업화학
    • /
    • 제19권2호
    • /
    • pp.228-235
    • /
    • 2008
  • 니켈 표면처리 공정에서 전류밀도에 따라 니켈의 전착두께가 증가되었으며, 증가폭은 $6{\sim}10A/dm^2$에서 저전류보다 높게 나타났다. 전류밀도를 측정하기 위해 Hull-cell 분석을 수행 하였다. 최적 공정온도는 $60^{\circ}C$, pH는 3.5~4.0이었고, 전해용액 중 니켈이온의 농도는 300 g/L 이상에서 농도에 따라 전착두께가 증가되었다. 전류밀도에 따라 용액 중 니켈이온 감소 속도가 증가되었는데, 이는 음극표면에서 니켈 전착 량에 따른 전착두께의 증가를 나타낸다. 그러나 전착속도가 빠를 경우 니켈 전착 층의 치밀성은 저하되며, 표면의 상태는 불규칙하게 변화된다. 니켈이온의 전착과정이 불규칙하게 일어나 조직의 pin hole 등을 야기해 표면특성을 저하시키는 것으로 확인되었다. 광택니켈 전착 후 25 h 내식을 유지한 결과, 낮은 전류밀도를 유지하는 것이 내식특성이 우수한 것으로 나타났다. 프로그램모사 결과, 전류밀도가 높아질수록 확산 층의 두께는 증가하며, 음극표면의 농도는 낮아진다. 농도분포는 낮은 전류밀도에서 고른 분포를 나타내었으며 이는 일정한 전착두께를 예측할 수 있다. 생산성 저하를 예방하기 위해 공정시간은 크게 변화시키지 않았으며, 전류밀도와 전착두께를 변화시키면서 공정변수를 조절하였다. 본 연구의 표면분석 결과 조직특성이나 내식성 등의 표면 물성이 낮은 전류밀도를 사용할 경우에 더욱 우수한 것으로 나타났다.

Electrodeposition of Cobalt Nanowires

  • Ahn, Sungbok;Hong, Kimin
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권3호
    • /
    • pp.927-930
    • /
    • 2013
  • We developed an electroplating process of cobalt nanowires of which line-widths were between 70 and 200 nm. The plating electrolyte was made of $CoSO_4$ and an organic additive, dimethyldithiocarbamic acid ester sodium salt (DAESA). DAESA in plating electrolytes had an accelerating effect and reduced the surface roughness of plated cobalt thin films. We obtained void-free cobalt nanowires when the plating current density was 6.25 mA/$cm^2$ and DAESA concentration was 1 mL/L.

도금액 관리에 관한 조사연구 (Studies on Control of Gilding Liquid)

  • 신종철;박광자;이성주;이종용
    • 한국표면공학회지
    • /
    • 제10권1호
    • /
    • pp.1-18
    • /
    • 1977
  • To support the domestic plating industry concerning localized products, survey was conducted in with chemicals and properties of plating solution. Collected samples from 55 factories throughout the country were investigated by spectigated by spectrograph, Hull cell test chemical analysis method to find major chemical components of the plating solution.

  • PDF

신 기술에 의한 페라이트 막의 저온 제작과 그 응용에 관한 연구 (A Study on the Low Temperature Preparation and the Practical Application of Ferrite Films by New Techniques.)

  • 최동진
    • 한국전기전자재료학회논문지
    • /
    • 제11권8호
    • /
    • pp.658-663
    • /
    • 1998
  • Ferrite plating enables were grown by ferrite by plating method in solution at low temperature(<10$0^{\circ}C$). This faciltates the fabrication of new ferrite thin film devices using non- heat-resistant materials(plastic, GaAs ect) as substrates. Combining the ferrite plating with sonochemistry, application of power ultrasonic waves to stimulate chemical reactions, the crystallinity and qualities of films were improved. Modifying the reactions cell and plating conditions further improved the film quality.

  • PDF

무전해도금(I) (Review on Electroless Plating(I))

  • 김만;권식철
    • 한국표면공학회지
    • /
    • 제19권3호
    • /
    • pp.121-127
    • /
    • 1986
  • There are many plating methods already commercially employed in te surface technology. One of the plating methods is electroless (chemical) plating, which is deposited by auto-catalytic reduction of metallic ion with the reducing agent in the plating bath. And it has many advantages comparing with electrolytic plating in respect of properties of deposit, such as corrosion resistance, wear resistance, uniformity, hardness, adhesion and so on. So, electroless plating is the fatest growing process in metallization of plastic and electronic industry. The properties and numerous applications of electroless deposits are attracting more and more attention from finish specifies. Many metal finishers are considering set-up of new electroless line in their shops. This review will be beneficial to domestic metal finishers to understand the real status of present electroless plating technology. It will also provide some knowledge on the economic aspect of electroless plating for the commercial application of specific parts.

  • PDF

무전해 니켈/금도금 기술 개발에 관한 연구 (The Study on Development of Plating Technique on Electroless Ni/Au)

  • 박수길;박종은;정승준;엄재석;전세호;이주성
    • 전기화학회지
    • /
    • 제2권3호
    • /
    • pp.138-143
    • /
    • 1999
  • 최근 large scale integrated circuits(LSI) 및 printed circuit board(PCB)의 세밀화가 전자기기의 소형화로 인하여 필수 불가결하게 되었다. 전해 도금은 LSI및 PCB의 전도도 및 부식저항을 향상시키기 위해서 전도성 라인의 말단에 적용되고 있다. 그러나 회로 기판의 소형화 및 고직접화로 인하여 적용되지 못하고 있다. 따라서 최근 무전해 도금은 복잡한 장치와 외부에서 전원을 필요치 않는 작동의 간편함 때문에 매우 각광 받고 있는 방법 중의 하나이다. 본 연구는 무전해 니켈/금도금의 도금 기술 개발을 위해 시험하였다. 무전해 니켈 도금은 $85^{\circ}C$의 도금 욕에서 PCB기판 위에 침적 시켰고 그 다음 금층은 동일한 방법으로 $90^{\circ}C$에서 니켈 층위에 침적 시켰다. Bonderbility는 무전해 니켈/금도금의 안정성을 평가하기 위해 gold wire 또는 solder ball 테스트로 실험하였다.

An Empirical Relation between the Plating Process and Accelerator Coverage in Cu Superfilling

  • Cho, Sung-Ki;Kim, Myung-Jun;Koo, Hyo-Chol;Kim, Soo-Kil;Kim, Jae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1603-1607
    • /
    • 2012
  • The effects of plating process on the surface coverage of the accelerator were investigated in terms of Cu superfilling for device metallization. When a substrate having 500 nm-wide trench patterns on it was immersed in an electrolyte containing poly (ethylene glycol) (PEG)-chloride ion ($Cl^-$)-bis(3-sulfopropyl) disulfide (SPS) additives without applying deposition potential for such a time of about 100s, voids were generated inside of the electrodeposit. In time-evolved electrochemical analyses, it was observed that the process (immersion without applying potential) in the electrolyte led to the build-up of high initial coverage of SPS-Cl on the surface, resulting in the fast saturation of the coverage. Repeated experiments suggested that the fast saturation of SPS-Cl failed in superfilling while a gradual increase in the SPS-Cl coverage through competition with initially adsorbed PEG-Cl enabled it. Consequently, superfilling was achievable only in the case of applying the plating potential as soon as the substrate is dipped in an electrolyte to prevent rapid accumulation of SPS-Cl on the surface.

직조된 SiC 섬유에 무전해 구리도금 시 도금 조건의 영향 (Effect of Plating Conditions on Electroless Copper Plating on SiC Fabric)

  • 이기환;손유한;한태양;이경진;김혜성;한준현
    • 한국표면공학회지
    • /
    • 제50권4호
    • /
    • pp.244-250
    • /
    • 2017
  • Effects of plating conditions (dispersant concentration, plating time, and ultrasonication) on electroless Cu plating on SiC fabric woven by crossing of SiC continuous fibers vertically were studied. The ultrasonic dispersion treatment not only did not improve the dispersion of the SiC fibers, but also did not change the plating thickness. The ultrasonication in the pretreatment step of electroless plating did not improve the dispersion of the fibers, while the ultrasonication in the plating step enhanced the dispersion of the fibers and decreased the thickness of the Cu films. It was possible to control the thickness of the Cu coating layer as well as the dispersion of the fibers in the fabric by changing the plating conditions such as dispersant concentration, plating time, and ultrasonication, but it was very difficult to coat copper on the intersection of vertical fibers in the fabric.