• Title/Summary/Keyword: Chemical Effects

Search Result 8,791, Processing Time 0.048 seconds

Fractionation and Pollution Index of Heavy Metals in the Sangdong Tungsten Mine Tailings (광미에 존재하는 중금속의 분획화와 오염도 평가)

  • Yang, Jae-E.;Kim, Hee-Joung;Jun, Sang-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.33-41
    • /
    • 2001
  • Enormous volumes of mining wastes from the abandoned and closed mines are disposed without a proper treatment in the upper Okdong River basin at Southeastern part of Kangwon Province. Erosion of these wastes contaminates soil, surface water, and sediments with heavy metals. Objectives of this research were to fractionate heavy metals in the mine tailing stored in the Sangdong Tungsten tailing dams and to assess the potential pollution index of each metal fraction. Tailing samples were collected from tailing dams at different depth and analyzed for physical and chemical properties. pH of tailings ranged from 7.3 to 7.9. Contents of total N and organic matter were in the ranges of 3.2~5.5%, and 1.3~9.1%, respectively. Heavy metals in the tailings were higher in the newly constructed tailing dam than those in the old dam. Total concentrations of metals in the tailings were in the orders of Zn > Cu > Pb > Ni > Cd, exceeded the corrective action level of the Soil Environment Conservation Law and higher than the natural abundance levels reported from uncontaminated soils. Relative distribution of heavy metal fractions was residual > organic > reducible > carbonate > adsorbed, reversing the degree of metal bioavailability. Mobile fractions of metals were relatively small compared to the total concentrations. Distribution of metals in the tailing dam profiles was metal specific. Concentrations of Cu at the surface of tailing dams were higher than those at the bottom. Pollution index (PI) values of each fraction of metals were ranged from 4.27 to 8.51 based on total concentrations. PI values of mobile fractions were lower than those of immobile fractions. Results on metal fractions and PI values of the tailing samples indicate that tailing samples were contaminated with heavy metals and had potential to cause a detrimental effects on soil and water environment in the lower part of the stream. A prompt countermeasure to prevent surface of tailings in the dams from water and wind erosions is urgently needed.

  • PDF

Fertility Status in Northeastern Alpine Soils of South Korea with Cultivation of Vegetable Crops (강원도 고랭지 채소 재배지의 토양 비옥도관리 현황과 전망)

  • Yang, Jae-E.;Cho, Byong-Ok;Shin, Young-Oh;Kim, Jeong-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • Total upland area for cultivating the vegetable crops in the Alpine soils of Northeastern South Korea has been extending its limit to meet the increasing demand of vegetable food in recent decades. About 70% of these alpine soils are located in over 7% of the slope and most of vegetable crops have been cultivated intensively without practicing the best management systems. Thus, soil erosion and continuous cropping system have degenerated the soil fertility and shown detrimental effects on water quality. We initiated an intensive and extensive investigation to characterize the fertility problems encountered in these uplands. Objectives of this paper were to characterize the fertility status in the Alpine soils cultivated with vegetable crops for many years and to provide the recommendations for adequate soil management measures including fertilization and erosion control. Soils in general have good drainage with textural classes of loam or sandy loam. Their topographical characteristics tended to lead them to shallow plow layers, and the steepness of the terrain created erosion hazard. Of the soils examined, about 11% of uplands over 30% gradient was found in need of an urgent reforestation. A high content of gravel and firm hardness of soil attributed to inhibit the utilization of farm machinery and plant-root development. The average soil pH 5.6 was slightly low relative to pH 5.70 of the national average. Organic matter content was high compared with 2.0% of national average, but decreased with the prolonged cultivation periods. Available $P_2O_5$ concentration was unusually high due to the consequence of over dose application with chemical and organic fertilizers. Exchangeable cations as Ca, Mg, and K were appeared to be decreased in these regions with prolonging the cultivation periods. There were no significant differences in cation exchange capacity (CEC) and electrical conductivity (EC) among locations. Heavy metal contents were mostly lower than the threshold of danger level designated by Soil Environment Conservation Law of South Korea. Results indicated that a proper countermeasure and the best management practice should be immediately implemented to conserve the top soil and fertility in the Alpine regions.

  • PDF

Effects of Compressed Expansion Rice Hull Application and Drip Irrigation on the Alleviation of Salt Accumulation in the Plastic Film House Soil (팽화왕겨 처리와 점적관개에 의한 염류집적 시설재배지 염류경감 효과)

  • Cho, Kwang-Rae;Kang, Chang-Sung;Won, Tae-Jin;Park, Kyeong-Yeol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.372-379
    • /
    • 2006
  • This study was carried out to improve chemical properties of salt-accumulated plastic film house soil. Compressed expansion rice hull was applied at 0, 2.5, 5.0, $7.5Mg\;ha^{-1}$, and drip irrigation was initiated at -33 kilopascals (kPa) of soil water potential and ceased adjusted up to -10 kPa. Another treatment was the application of inflated rice hull at $5.0Mg\;ha^{-1}$ with drip irrigation starting at soil water potential -20 kPa and adjusted to -10 kPa. Lettuce(Lactuca sativa L.) was cultivated at sandy loam soil with $5.1dS\;m^{-1}$ of electrical conductivity (EC). $EC_w$(1:5) of plots treated with $5.0Mg\;ha^{-1}$ of inflated rice hull and irrigated at the point of -20 kPa and -33 kPa of soil water potential was reduced by 26% and 24% less than untreated control plot, respectively. Soil $EC_w$(1:5) has close relationship with $Cl^-$ as well as $NO_3{^-}-N$ and $SO{_4}^{2-}$ in the soil. Total nitrogen in leaf of lettuce was deficient in the earlier growth stage. The yield of lettuce increased by 6% by the application of inflated rice hull of $5.0Mg\;ha^{-1}$ with drip irrigation starting at -33 kPa of soil water potential. It decreased 4% when the drip irrigation was stated at -20 kPa of soil water potential. The amount of water used for irrigation was reduced with the increasing application of inflated rice hull. The watering initiated at the point of -33 kPa was more economical compared with starting at -20 kPa.

Influences of Chinese Cabbage Growth and Soil Salinity to Alternative Irrigation Waters (대체관개 용수에 의한 배추생육 및 토양 염류도에 미치는 영향)

  • Shin, Joung-Du;Park, Sang-Won;Kim, Won-Il;Lee, Jong-Sik;Yun, Sun-Gang;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.25-30
    • /
    • 2007
  • Objective of this experiment was to investigate the growth effects of Chinese cabbage and soil salinity to alternative irrigation waters for drought periods. The treatments were consisted of the discharge water from industrial wastewater treatment plant (DIWT), the discharge water from municipal wastewater treatment plant (DMWT) and ground water as the control. For the chemical compositions of alternative water, it appeared that concentrations of the $Ni^+$ and SAR values in DIWT were over the reuse criteria of other countries for irrigation, but CODcr concentration in DMWT was higher than the reuse criteria for agricultural irrigation. According to classification of water by $EC_i$ value, DIWT and DMWT are ranged from 0.7 to $2.0dS\;m^{-1}$, slight salinity. Average harvest indexes were 0.64 for DIWT and 0.63 for DMWT as compared to 0.61 of the control regardless of irrigation periods. SAR value in soil was increased with prolonging the irrigation periods at head forming stage, but not much difference except for 30 days of irrigation period at harvesting time for DIWT. However, it was not much difference along with irrigation periods through the growth stages for DMWT as compared with the groundwater. At harvesting time, average $EC_e$ for the soil irrigated with alternative agricultural waters was $0.017dS\;m^{-1}$ for its DIMT and $0.036dS\;m^{-1}$ for its DMWT as compared to $0.013dS\;m^{-1}$ of its groundwater as the control. For $NH_4-N$ concentrations, it observed that there were no differences among the treatments with different irrigation periods at head forming stage in soil after irrigation. Also, $NO_3-N$ concentration in soil was increased up to 20 days after irrigation, and then decreased at 30 days after irrigation with DMWT at head forming stage. The $Ni^+$ concentration in upper layer soil (0-15 cm) irrigated with DIWT was increased with prolonging the irrigation period at head forming stage, but it was dramatically decreased and almost constant in all the treatments at harvesting time. Therefore, it might be concluded that there was potentially safe to irrigate the discharge water from municipal wastewater treatment plant for 20 days after transplanting to drought periods with cultivating the Chinese cabbage.

Effect of 17β-estradiol on Ecdysteroid Pathway Related Genes in the Brackish Water Flea Diaphanosoma celebensis (17β-estradiol이 기수산 물벼룩의 Ecdysteroid 경로에 미치는 영향)

  • In, Soyeon;Yoo, Jewon;Cho, Hayoung;Lee, Young-Mi
    • Journal of Marine Life Science
    • /
    • v.5 no.2
    • /
    • pp.35-42
    • /
    • 2020
  • 17β-estradiol (E2) is a natural hormone secreted by ovary, and continuously discharged from household and livestock wastewater into aquatic environment. Due to its strong estrogenic activity, it has adverse effects on development and reproduction in crustacean as an endocrine disrupting chemical. Although ecdysteroid signaling pathway play a key role in development in crustacean, little information on transcriptional modulation of ecdysteroid-related genes in response to E2 is available in small crustacean. Here, we investigated the acute toxicity of E2 to obtain 24-h LCx values in the brackish water flea Diaphanosoma celebensis. Time-dependent expression patterns of seven ecdysteroid pathway - related genes (CYP314a1, EcRA, EcRB, USP, ERR, Vtg, VtgR) were further examined using quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR). As results, 24-h LC50 and LC10 values were 9.581 mg/l and 4.842 mg/l, respectively. The mRNA expression of CYP314a1, EcRA, USP, VtgR was significantly up-regulated at 12 or 24 h after exposure to E2. These findings indicate that E2 can affect their molting and reproduction by modulating the expression of ecdysteroid pathway - related in D. celebensis. This study will be useful for better understanding of molecular mode of action of endocrine disrupting chemicals on molting process in small crustacean.

Effects of Temperature and Saturation on the Crystal Morphology of Aragonite (CaCO3) and the Distribution Coefficient of Strontium: Study on the Properties of Strontium Incorporation into Aragonite with respect to the Crystal Growth Rate (온도와 포화도가 아라고나이트(CaCO3)의 결정형상과 스트론튬(Sr)의 분배계수에 미치는 영향: 결정성장속도에 따른 아라고나이트 내 스트론튬 병합 특성 고찰)

  • Lee, Seon Yong;Chang, Bongsu;Kang, Sue A;Seo, Jieun;Lee, Young Jae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.2
    • /
    • pp.133-146
    • /
    • 2021
  • Aragonite is one of common polymorphs of calcium carbonate (CaCO3) and formed via biological or physical processes through precipitation in many different environments including marine ecosystems. It is noted that aragonite formation and growth as well as the substitution of trace elements such as strontium (Sr) in the aragonite structure would be dependant on several key parameters such as concentrations of chemical species and temperature. In this study, properties of the incorporation of Sr into aragonite were investigated over a wide range of various saturation conditions and temperatures similar to the marine ecosystem. All pure aragonite samples were inorganically synthesized through a constant-addition method with varying concentrations of the reactive species ([Ca]=[CO3] 0.01-1 M), injection rates of the reaction solution (0.085-17 mL/min), and solution temperatures (5-40 ℃). Pure aragonite was also formed even under the Sr incorporation conditions (0.02-0.5 M, 15-40 ℃). When temperature and saturation index (SI) with respect to aragonite increased, the crystallinity and the crystal size of aragonite increased indicating the growth of aragonite crystal. However, it was difficult to interpret the crystal growth rate because the crystal growth rate calculated using BET-specific surface area was significantly influenced by the crystal morphology. The distribution coefficient of Sr (KSr) into aragonite decreased from 2.37 to 1.57 with increasing concentrations of species (Ca2+ and CO32-) at a range of 0.02-0.5 M. Similarly, it was also found that KSr decreased 1.90 to 1.54 at a range of 15-40 ℃. All KSr values are greater than 1, and the inverse correlation between the KSr and the crystal growth rate indicate that Sr incorporation into aragonite is in a compatible relationship.

New demand forecast for vocational high school graduates in regional strategic industries: Focusing on comparison between Daejeon and Jeonnam (지역전략산업에 따른 특성화고 졸업자 신규수요 예측: 대전과 전남 지역 비교를 중심으로)

  • Kim, Jin-Mo;Choi, Su-Jung;Jeon, Yeong-Uk;Oh, Jin-Ju;Ryu, Ji-Eun;Kim, Seon-Geun
    • Journal of vocational education research
    • /
    • v.36 no.1
    • /
    • pp.47-75
    • /
    • 2017
  • The purpose of this study was to provide basic data for policy making for secondary vocational education in each region and transformation in vocational high schools. To achieve this, the regional strategic industries in Daejeon and Jeonnam were selected, new demand for vocational high school graduates was forecasted in each industry and occupation. The results of the study are as follows. First, locational quotient analysis and regional shift-share analysis revealed that Daejon and Jeonnam have different strategic industries. Daejon, unlike Jeonnam strategically develops 'manufacturing food, beverage and tobacco', 'manufacturing timber and paper, printing and copying', 'public service and administration of national defense and social security' and 'manufacturing electrical devices, electronics and precision devices'. Jeonnam has specialized industries distinguished from Daejon's, which are 'manufacturing of machinery transportation equipments and etc', 'manufacturing of non-metallic minerals and metal products', 'electric, gas, steam and water supply systems/industries', 'manufacturing coal and chemical products, refining petroleum', 'mining' and 'agriculture, forestry and fishery'. Second, new demand for vocational high school graduates by occupations and industries showed regional differences(in Daejon and Jeonnam). According the forecast, Daejon will have many workforce demands based on manufacturing industries, on the other hand Jeonnam's focused on service industries. Analysis by occupations was also different, Daejon showed high demands on professional and related workers, while Jeonnam requested many new office and service workers. Third, new workforce demand by occupations in regional strategic industries is big part of overall new workforce demand both in Daejon and Jeonnam. Forth, according to the results of analyzing the new demand for vocational high school graduates in Daejeon and Jeonnam in terms of industry location quotient and change effect, there was high demand in industries with positive total change effects. In terms of location quotient, Daejeon and Jeonnam showed different results.

Assessing Effects of Calcium Chloride (CaCl2) Deicing Salt on Salt Tolerance of Miscanthus sinensis and Leachate Characterizations (염화칼슘 제설제 처리농도에 따른 참억새의 내염성 및 침출수 평가)

  • Ju, Jin-Hee;Yang, Ji;Park, Sun-Young;Yoon, Yong-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.4
    • /
    • pp.61-67
    • /
    • 2019
  • The purpose of this research is to evaluate the salt tolerance of the Miscanthus sinensis and to characterize the content of pigments in the leachate in relation to calcium chloride ($CaCl_2$) deicing salt. Miscanthus sinensis were cultured at five different concentrations of calcium chloride deicing salt, 0, 1, 2, 5, and $10g{\cdot}L^{-1}$ (referred to Cont. C1, C2, C5, and C10) for four months. The salt tolerance and leachate while growing Miscanthus sinensis on soil which was artificially contaminated by calcium chloride deicing salt. Soil chemical properties (pH, E.C., $Ca^{2+}$, $Na^+$, $K^+$, and $Mg^{2+}$) and plant growth parameters (plant height, leaf length, leaf width, number of leaves, shoot fresh weight, root fresh weight, shoot dry weight, an root dry weight) were evaluated. Soil pH decreased, while electrical conductivity significantly decreased ($p{\leq}0.05$) with a higher concentration of deicing salt $0g{\cdot}L^{-1}$ (Cont.). The increase in the concentration of chloride-based exchangeable cations, along with the increase in the deicing salt treatments, were observed in $Ca^{2+}$ > $Na^+$ > $K^+$ > $Mg^{2+}$. Notably the $Ca^{2+}$ exchangeable cations were 83~90% higher than the others. The growth of Miscanthus sinensis significantly increased ($p{\leq}0.05$) with the concentration of deicing salt higher than $1g{\cdot}L^{-1}$ (C1) when compared to 0 g/L (Cont.), except for the $10g{\cdot}L^{-1}$ (C10) treatment. The results determined that the contamination of soil by deicing salt could negatively impact the soil and Miscanthus sinensis was a tolerant species for the deicing salts. Further research will be focused on soil improvement additives and the stable stimulated plant growth of Miscanthus sinensis and a formulation on that basis for the soil-plant continuum.

Ginsenosides from the fruits of Panax ginseng and their cytotoxic effects on human cancer cell lines (인삼(Panax ginseng) 열매로부터 분리한 ginsenoside의 동정 및 암세포독성 효과)

  • Gwag, Jung Eun;Lee, Yeong-Geun;Hwang-Bo, Jeon;Kim, Hyoung-Geun;Oh, Seon Min;Lee, Dae Young;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.371-377
    • /
    • 2018
  • The fruits of Panax ginseng were extracted with 80% aqueous MeOH and the concentrates were partitioned into EtOAc, n-BuOH, and $H_2O$ fractions. The repeated $SiO_2$ and octadecyl $SiO_2$ column chromatographies for the EtOAc fraction led to isolation of five ginsenosides. The chemical structures of these compounds were determined as ginsenoside F1 (1), ginsenoside F2 (2), ginsenoside F3 (3), ginsenoside Ia (4), notoginsenoside Fe (5) based on spectroscopic analyses including nuclear magnetic resonance, MS, and infrared. Compounds 2-5 were isolated for the first time from the fruits of P. ginseng in this study. All isolated compounds were evaluated for cytotoxic activities against human cancer cell lines such as HCT-116, SK-OV-3, human cervix adenocarcinoma (HeLa), HepG2, and SK-MEL-5. Among them compounds 2, 4, and 5 showed significant cytotoxicity on cancer cells. Compound 2 exhibited cytotoxicity on SK-MEL-5, HepG2, and HeLa cells with $IC_{50}$ values of 82.8, 86.8, and $78.3{\mu}M$, respectively. Compound 4 showed cytotoxicity on HCT-116, SK-MEL-5, SK-OV-3, HepG2, and HeLa cells with $IC_{50}$ values of 24.5, 25.4, 26.3, 22.0, and $24.9{\mu}M$, respectively. Compound 5 did on SK-MEL-5 cell with $IC_{50}$ value of $81.7{\mu}M$. The cytotoxicity of ginsenoside 2, 4, and 5 isolated from the fruits of Panax ginseng showed strong inhibition effect against on cancer cells, all of which have a glucopyranosyl moiety on C-3.

Investigation of Microbial Contamination in Semisulcospira libertine and Evaluation of Its Reduction Effects by Sediment Removal Treatment (다슬기(Semisulcospira libertine)의 미생물 오염도 평가 및 해감 제거공정에 따른 저감화 효과)

  • Choi, Man-Seok;Jun, Eun Bi;Choi, Seungho;Bang, Hyeon-Jo;Park, Shin Young
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.4
    • /
    • pp.361-366
    • /
    • 2019
  • In this study, microbial contamivation semisulcospira libertine and effect of sedimentation treatment of major bacterial and fungal pathogens were investigated. The total aerobic bacteria, coliforms, Escherichia coli, Staphylococcus aureus, and yeast and mold present in raw and water-dipped Semisulcospira libertine were enumerated using the standard plate count methods on using the standard plate method on potato dextrose agar (PDA), 3M Petrifilm for coliforms / E. coli, 3M Petrifilm for S. aureus, and plate count agar (PCA), respectively. In analysis of microbial contamination of raw Semisulcospira libertine, the total aerobic bacteria, coliforms, and yeast and mold were monitored as 6.40, 2.70, and $6.79{\log}_{10}CFU/g$, respectively. Both E. coli and S. aureus were not detected (detection limit: 10 CFU/g). However, Semisulcospira libertine dipped in ground water for 3 hours had higher contamination levels of all natural indigenous microorganisms than raw Semisulcospira libertine. Especially, E. coli was detected as $2.46{\log}_{10}CFU/g$ in the ground water-dipped Semisulcospira libertine. The total aerobic bacteria in the ground water-dipped Semisulcospira libertine was not significantly reduced (p>0.05) compared to that in the raw Semisulcospira libertine. Moreover, coliforms were significantly increased (p>0.05) in all water-dipped Semisulcospira libertine. Only fungi were slightly reduced (less than 0.2 log) (p>0.05) in the tap water-dipped Semisulcospira libertine by comparison with the raw Semisulcospira libertine. The results of this study suggest that the use of chemical sterilizing agents and other physical methods in the washing stage will be necessary for the microbial reduction in raw Semisulcospira libertine because the use of sediment removal treatment by ground or tap water did not affect the microbiological safety of the raw Semisulcospira libertine.