Browse > Article
http://dx.doi.org/10.9715/KILA.2019.47.4.061

Assessing Effects of Calcium Chloride (CaCl2) Deicing Salt on Salt Tolerance of Miscanthus sinensis and Leachate Characterizations  

Ju, Jin-Hee (Dept. of Green Technology Convergence, Konkuk University)
Yang, Ji (Dept. of Green Technology Convergence Graduate School, Konkuk University)
Park, Sun-Young (Dept. of Green Technology Convergence Graduate School, Konkuk University)
Yoon, Yong-Han (Dept. of Green Technology Convergence, Konkuk University)
Publication Information
Journal of the Korean Institute of Landscape Architecture / v.47, no.4, 2019 , pp. 61-67 More about this Journal
Abstract
The purpose of this research is to evaluate the salt tolerance of the Miscanthus sinensis and to characterize the content of pigments in the leachate in relation to calcium chloride ($CaCl_2$) deicing salt. Miscanthus sinensis were cultured at five different concentrations of calcium chloride deicing salt, 0, 1, 2, 5, and $10g{\cdot}L^{-1}$ (referred to Cont. C1, C2, C5, and C10) for four months. The salt tolerance and leachate while growing Miscanthus sinensis on soil which was artificially contaminated by calcium chloride deicing salt. Soil chemical properties (pH, E.C., $Ca^{2+}$, $Na^+$, $K^+$, and $Mg^{2+}$) and plant growth parameters (plant height, leaf length, leaf width, number of leaves, shoot fresh weight, root fresh weight, shoot dry weight, an root dry weight) were evaluated. Soil pH decreased, while electrical conductivity significantly decreased ($p{\leq}0.05$) with a higher concentration of deicing salt $0g{\cdot}L^{-1}$ (Cont.). The increase in the concentration of chloride-based exchangeable cations, along with the increase in the deicing salt treatments, were observed in $Ca^{2+}$ > $Na^+$ > $K^+$ > $Mg^{2+}$. Notably the $Ca^{2+}$ exchangeable cations were 83~90% higher than the others. The growth of Miscanthus sinensis significantly increased ($p{\leq}0.05$) with the concentration of deicing salt higher than $1g{\cdot}L^{-1}$ (C1) when compared to 0 g/L (Cont.), except for the $10g{\cdot}L^{-1}$ (C10) treatment. The results determined that the contamination of soil by deicing salt could negatively impact the soil and Miscanthus sinensis was a tolerant species for the deicing salts. Further research will be focused on soil improvement additives and the stable stimulated plant growth of Miscanthus sinensis and a formulation on that basis for the soil-plant continuum.
Keywords
Calcium Chloride; Deicing Salts; Miscanthus sinensis; Salt Tolerance; Roadside Soil;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Arduini, L., L. Ercoli, M. Mariotti and A. Masoni(2006) Response of Miscanthus to toxic cadmium applications during the period of maximum growth. Environ. Exp. Bot. 55: 29-40.   DOI
2 Agnieszka, P., D. Franciszek, K. Janusz, T. Maria, M. Maciej, G. Krzysztof and Z. Grzegorz(2014) Tolerance of Miscanthus $\times$ giganteus to salinity depends on initial weight of rhizomes as well as high accumulation of potassium and proline in leaves. Ind. Crop. Prod. 52: 278-285.   DOI
3 Choung, Y. S.(1993) Comparative study on the growth dynamics of some grasses. Korean J. Ecol. 16(3): 329-339.
4 Choung, Y. S.(2002) Distribution and performance of Miscanthus sinensis community in Mt. Mindung, Kangwon Province, Korea. Korean J. Ecol. 25(1): 33-37.   DOI
5 Choi, H. S., J. S. Hong, F. K. F. Geronimo and L. H. Kim(2018) Implications of $CaCl_2$ application to plants in LID facilities. Water Science and Technology 78(5): 1045-1053.   DOI
6 Je, S. M. and S. H. Kim(2017) Growth and physiological responses of Pinus strobus to $CaCl_2$. Journal of the Korean Institute of Landscape Architecture 45(3): 1-8.   DOI
7 Je, S. M. and S. H. Kim(2016) Effect of $CaCl_2$ on gas exchange and stomatal responses in the leaves of Prunus serrulata. J. Korean For. Soc. 105(3): 303-308.   DOI
8 Ju, J. H., J. Y. Park, H. Xu, E. Y. Lee, K. H. Hyun, J. S. Jung, E. Y. Choi and Y. H. Yoon(2016a) Growth and physiological response of three evergreen shrubs to de-icing salt ($CaCl_2$) at different concentration in winter: Focusing on Euonymus japonica, Rhodoendron indicum, and Buxus korean. Journal of the Korean Institute of Landscape Architecture 44(2): 122-129.   DOI
9 Ju, J. H., H. Xu, J. Y. Park, E. Y. Choi and Y. H. Yoon(2016b) Evaluation of salt tolerance of Liriope platyphylla and Pachysandra terminalis to deicing salt ($CaCl_2$) concentration in winter. Korean J. Environ. Ecol. 30(4): 651-657.   DOI
10 Kim, M. H., S. H. Song, E. S. Min and I. S. Jang(2000) Heavy metal pollutions of the top soil, plants and stream water from the serpentinite area, Chungnam. Korean J. Environ. Ecol. 14(2): 119-126.
11 Lee, J. S.(2004) A study on change of an accumulated organic matter contents according to successional stage on temperate grassland. Korean J. Environ. Biol. 22(3): 381-386.
12 Kim, K. R., H. H. Lee, C. W. Jung, J. Y. Kang, S. N. Park and K. H. Kim(2002) Investigation of soil contamination of some major roadsides in Seoul II. Major roadsides in Gangdong-, Gwangjin-, Nowon-, Seodaemum- and Seongdong-gu. J. Korean Soc. Agri. Chem. Biotechnol. 45(2): 92-96.
13 Kim, L. S. and D. W. Lee(2014) Effect of chloride-deicers on growth of wheat, barley and spinach. Korean J. Environ. Agric. 33(4): 350-357.   DOI
14 Kwon, M. Y., S. H. Kim and J. H. Sung(2014) The responses of growth and physiological traits of Acer triflorum on calcium chloride ($CaCl_2$) concentration. Korean J. Environ Ecol. 28(5): 500-509.   DOI
15 Li, F., Y. Zhang, Z. Fan and K. Oh(2015) Accumulation of de-icing salts and its short-term effect on metal mobility in urban roadside soils. Bull. Environ. Contm. Toxiclo. 94: 525-531.   DOI
16 Liang, W., X. Ma, P. Wan and L. Liu(2018) Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commu. 495: 286-291.   DOI
17 Mun, H. T., B. K. Park and J. H. Kim(1997) Response of plants and changes of soil properties to added acid-soil ameliorants. Korean J. Ecol. 20(1): 43-49.
18 Nisha, K., Y. Kuldeep, B. Neetu and A. Ashok(2013) AM fungi ameliorates growth, yield and nutrient uptake in Cicer arietinum L. under salt stress. Russian Agricultural Science 39(4): 321-329.   DOI
19 Shin, S. S., S. D. Park, H. S. Kim and K. S. Lee(2010) Effect of calcium chloride and eco-friendly deicer on the plant growth. Korean Society of Environmental Engineers 32(5): 487-498.
20 Park, S. G. and S. H. Choi(2018) A study on the growth environment characteristics of the Miscanthus sinensis community and the presumed economic value of theMiscanthus sinensis community landscape conservation. Proc. Korean Soc. Environ. Ecol. Con. 28(1): 29-30.
21 Stephanie, L. N. and D. B. David(2005) Alleviation of salt-induced stress on seed emergence using soil additives in a greenhouse. Plant and Soil 268: 303-307.   DOI
22 Soh, J. W., S. Y. Soh and S. Y. Nam(2015) pH variance model depending on phosphate ion form. Korean J. Hortic. Sci. Technol. 33(6): 854-859.   DOI
23 Song, H. S. and W. Cho(2007) Diversity and sonation of vegetation related micro-topography in Sinduri coastal dune, Korea. Kor. J. Env. Eco. 21(3): 290-298.
24 Sung, J. H., S. M. Je, S. H. Kim and Y. K. Kim(2009) Effect of calcium chloride ($CaCl_2$) on the characteristics of photosynthetic apparatus, stomatal conductance, and fluorescence image of the leaves of Cornus kousa. Korean Journal of Agricultural and Forest Meteorology 11(4): 143-150.   DOI
25 Sung, J. H., S. M. Je, S. H. Kim and Y. K. Kim(2010) Effect of calcium chloride ($CaCl_2$) on chlorophyll fluorescence image and photosynthetic apparatus in the leaves of Prunus sargentii. Jour. Korean For. Soc. 99(6): 922-928.
26 The Korean Institute of Landscape Architecture(2013) Landscape Architecture Design Standard. Seoul: Kimoondang.
27 Willam, R. T., G. Bahram and P. Nandana(2015) Road slat application planning tool for winter de-icing operations. J. Hydrol. 524: 401-410.   DOI