DOI QR코드

DOI QR Code

17β-estradiol이 기수산 물벼룩의 Ecdysteroid 경로에 미치는 영향

Effect of 17β-estradiol on Ecdysteroid Pathway Related Genes in the Brackish Water Flea Diaphanosoma celebensis

  • 인소연 (상명대학교 융합공과대학 생명공학과) ;
  • 유제원 (상명대학교 융합공과대학 생명공학과) ;
  • 조하영 (상명대학교 융합공과대학 생명공학과) ;
  • 이영미 (상명대학교 융합공과대학 생명공학과)
  • In, Soyeon (Department of Biotechnology, College of Convergence Engineering, Sangmyung University) ;
  • Yoo, Jewon (Department of Biotechnology, College of Convergence Engineering, Sangmyung University) ;
  • Cho, Hayoung (Department of Biotechnology, College of Convergence Engineering, Sangmyung University) ;
  • Lee, Young-Mi (Department of Biotechnology, College of Convergence Engineering, Sangmyung University)
  • 투고 : 2020.07.15
  • 심사 : 2020.08.13
  • 발행 : 2020.12.16

초록

17β-estradiol (E2)는 난소로부터 방출되는 호르몬으로 가정 및 축산 오폐수에 포함되어 환경으로 지속적으로 유출된다. E2는 높은 에스트로겐 활성을 가지고 있어 갑각류의 발달과 생식에 영향을 미치는 내분비계교란물질로 알려져 있다. 갑각류의 발달은 탈피호르몬(ecdysteroid)의 신호 전달 과정에 의해 이루어지지만 E2가 소형 갑각류의 탈피호르몬 경로 유전자를 어떻게 조절하는지에 대한 연구는 매우 미흡하다. 본 연구에서는 기수산 물벼룩 Diaphanosoma celebensis에서 E2에 대한 급성 독성 시험을 통해 24-h LCx 값을 도출하였고, E2 노출에 따른 탈피호르몬 경로에 관여하는 7개의 유전자(CYP314a1, EcRA, EcRB, USP, ERR, Vtg, VtgR)의 시간별 발현 변화를 quantitative real time polymerase chain reaction (qRT-PCR)을 이용하여 분석하였다. D. celebensis의 24-h LC50 값은 9.581 mg/l (95% C.I.: 7.697~11.927 mg/l), 24 h-LC10 값은 4.842 mg/l(95% C.I.: 3.683~6.366 mg/l)로 나타났다. CYP314a1, EcRA, USP, VtgR 유전자의 발현이 12시간 또는 24시간에 유의하게 증가하는 양상을 보였다. 이러한 결과는 E2가 D. celebensis의 탈피호르몬 경로에 관련하는 유전자의 발현을 조절함으로써 탈피와 생식에 영향을 미칠 수 있을 것임을 시사한다. 본 연구는 소형 갑각류에서 내분비계교란물질이 탈피 경로에 미치는 영향에 대한 분자 기전을 이해하는데 도움이 될 것이다.

17β-estradiol (E2) is a natural hormone secreted by ovary, and continuously discharged from household and livestock wastewater into aquatic environment. Due to its strong estrogenic activity, it has adverse effects on development and reproduction in crustacean as an endocrine disrupting chemical. Although ecdysteroid signaling pathway play a key role in development in crustacean, little information on transcriptional modulation of ecdysteroid-related genes in response to E2 is available in small crustacean. Here, we investigated the acute toxicity of E2 to obtain 24-h LCx values in the brackish water flea Diaphanosoma celebensis. Time-dependent expression patterns of seven ecdysteroid pathway - related genes (CYP314a1, EcRA, EcRB, USP, ERR, Vtg, VtgR) were further examined using quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR). As results, 24-h LC50 and LC10 values were 9.581 mg/l and 4.842 mg/l, respectively. The mRNA expression of CYP314a1, EcRA, USP, VtgR was significantly up-regulated at 12 or 24 h after exposure to E2. These findings indicate that E2 can affect their molting and reproduction by modulating the expression of ecdysteroid pathway - related in D. celebensis. This study will be useful for better understanding of molecular mode of action of endocrine disrupting chemicals on molting process in small crustacean.

키워드

참고문헌

  1. Ali MW, Zhang Z, Xia S, Zhang H. 2017. Biofunctional analysis of Vitellogenin and Vitellogenin receptor in citrus red mites, Panonychus citri by RNA interference. Sci Rep 7: 16123. https://doi.org/10.1038/s41598-017-16331-3
  2. Boulange-Lecomte C, Xuereb B, Tremolet G, Duflot A, Giusti N, Olivier S, Legrand E, Forget-Leray J. 2017. Controversial use of vitellogenin as a biomarker of endocrine disruption in crustaceans: New adverse pieces of evidence in the cope pod Eurytemora affinis. Comp Biochem Physiol C Toxicol Pharmacol 201: 66-75. https://doi.org/10.1016/j.cbpc.2017.09.011
  3. Brennan SJ, Brougham CA, Roche JJ, Fogarty AM. 2006. Multi-generational effects of four selected environmental oestrogens on Daphnia magna. Chemosphere 64: 49-55. https://doi.org/10.1016/j.chemosphere.2005.11.046
  4. Chen D, Kannan K, Tan H, Zheng Z, Feng YL, Wu Y, Widelka M. 2016. Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity - a review. Environ Sci Technol 50: 5438-5453. https://doi.org/10.1021/acs.est.5b05387
  5. Christiaens O, Iga M, Velarde RA, Rouge P, Smagghe G. 2010. Halloween genes and nuclear receptors in ecdysteroid bio-synthesis and signalling in the pea aphid. Insect Molecular biology 19: 187-200. https://doi.org/10.1111/j.1365-2583.2009.00957.x
  6. Dai Y, Liu CC. 2017. Detection of 17β-Estradiol in Environmental Samples and for Health Care Using a Single-Use, CostEffective Biosensor Based on Differential Pulse Voltammetry (DPV). Biosensors (Basel) 7: 15. https://doi.org/10.3390/bios7020015
  7. Dominguez GA, Quattro JM, Denslow ND, Kroll KJ, Prucha MS, Porak WF, Grier HJ, Sabo-Attwood TL. 2012. Identification and transcriptional modulation of the largemouth bass, Micropterus salmoides, vitellogenin receptor during oocyte development by insulin and sex steroids. Biol Reprod 87: 67. https://doi.org/10.1093/biolreprod/87.s1.67
  8. Elnwishy N, Sabri D, Nwonwu F. 2012. The effect of difference in environmental colors on Nile Tilapia (Oreochromis niloticus) production efficiency. Int J Agric Biol 14: 516-520.
  9. Esplugas S, Bila DM, Krause LGT, Dezotti M. 2007. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J Hazard Mater 149: 631-642. https://doi.org/10.1016/j.jhazmat.2007.07.073
  10. Forghani M, Sadeghi G, Peyda M. 2020. The Presence of 17 Beta-estradiol in the environment: health effects and increasing environmental concerns. IJER 5: 151-158.
  11. Ghekiere A, Verslycke T, Janssen C. 2006. Effects of methoprene, nonylphenol, and estrone on the vitellogenesis of the mysid Neomysis integer. Gen Comp Endocrinol 147: 190-195. https://doi.org/10.1016/j.ygcen.2005.12.021
  12. Giguere V. 2002. To ERR in the estrogen pathway. Trends Endocrinol Metab 13: 220-225. https://doi.org/10.1016/S1043-2760(02)00592-1
  13. Gismondi E. 2018. Identification of molt-inhibiting hormone and ecdysteroid receptor cDNA sequences in Gammarus pulex, and variations after endocrine disruptor exposures. Ecotox Environ Safe 158: 9-17. https://doi.org/10.1016/j.ecoenv.2018.04.017
  14. Hannas BR, Wang YH, Thomson S, Kwon G, Li H, Leblanc GA. 2011. Regulation and dysregulation of vitellogenin mRNA accumulation in daphnids (Daphnia magna). Aquat Toxicol 101: 351-357. https://doi.org/10.1016/j.aquatox.2010.11.006
  15. Hara A, Hiramatsu N, Fujita T. 2016. Vitellogenesis and choriogenesis in fishes. Fish Sci 82: 187-202. https://doi.org/10.1007/s12562-015-0957-5
  16. Herrero O, Aquilino M, Sanchez-Arguello P, Planello R. 2018. The BPA-substitute bisphenol S alters the transcription of genes related to endocrine, stress response and biotransformation pathways in the aquatic midge Chironomus riparius (Diptera, Chironomidae). PLoS One 13: e0193387. https://doi.org/10.1371/journal.pone.0193387
  17. Huang L, Xi Y, Zha C, Zhao L, Wen X. 2012. Effects of dieldrin and 17β-estradiol on life history characteristics of freshwater rotifer Brachionus calyciflorus Pallas. J Freshw Ecol 27: 381-392. https://doi.org/10.1080/02705060.2012.668499
  18. In S, Cho H, Lee KW, Won EJ, Lee YM. 2020. Cloning and molecular characterization of estrogen-related receptor (ERR) and vitellogenin genes in the brackish water flea Diaphanosoma celebensis exposed to bisphenol A and its structural analogues. Mar Pollut Bull 154: 111063. https://doi.org/10.1016/j.marpolbul.2020.111063
  19. In S, Yoon HW, Yoo JW, Cho H, Kim RO, Lee YM. 2019. Acute toxicity of bisphenol A and its structural analogues and transcriptional modulation of the ecdysone-mediated pathway in the brackish water flea Diaphanosoma celebensis. Ecotoxicol Environ Saf 179: 310-317. https://doi.org/10.1016/j.ecoenv.2019.04.065
  20. Jaffrezic-Renault N, Kou J, Tan D, Guo Z. 2020. New trends in the electrochemical detection of endocrine disruptors in complex media. Anal Bioanal Chem https://doi.org/10.1007/s00216-020-02516-9.
  21. Jeong SW, Lee SM, Yum SS, Iguchi T, Seo YR. 2013. Genomic expression responses toward bisphenol-A toxicity in Daphnia magna in terms of reproductive activity. Mol Cell Toxicol 9: 149-158. https://doi.org/10.1007/s13273-013-0019-y
  22. Kato Y, Kobayashi K, Oda S, Tatarazako N, Watanabe H, Iguchi T. 2007. Cloning and characterization of the ecdysone receptor and ultraspiracle protein from the water flea Daphnia magna. J Endocrinol 193: 183-194. https://doi.org/10.1677/JOE-06-0228
  23. Kim BM, Kang S, Kim RO, Jung JH, Lee KW, Rhee JS, Lee YM. 2018. De novo transcriptome assembly of brackish water flea Diaphanosoma celebensis based on short-term cadmium and benzo[a]pyrene exposure experiments. Hereditas 155: 36-42. https://doi.org/10.1186/s41065-018-0075-3
  24. Lafont R, Mathieu M. 2007. Steroids in aquatic invertebrates. Ecotoxicology 16: 109-130. https://doi.org/10.1007/s10646-006-0113-1
  25. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real time quantitative PCR and the 2-ΔΔCT method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  26. Lye CM, Bentley MG, Galloway T. 2008. Effects of 4-nonylphenol on the endocrine system of the shore crab, Carcinus maenas. Environ Toxicol 23: 309-318. https://doi.org/10.1002/tox.20344
  27. Maeda S, Nakashima A, Yamada R, Hara N, Fujimoto Y, Ito Y, Sonobe H. 2008. Molecular cloning of ecdysone 20-hydroxylase and expression pattern of the enzyme during embryonic development of silkworm Bombyx mori. Comp Biochem Physiol B 149: 507-516. https://doi.org/10.1016/j.cbpb.2007.11.015
  28. Marcial HS, Hagiwara A. 2007. Multigenerational effects of 17βestradiol and nonylphenol on euryhaline cladoceran Diaphanosoma celebensis. Fish Sci 73: 324-330. https://doi.org/10.1111/j.1444-2906.2007.01338.x
  29. Martin-Creuzburg D, Westerlund SA, Hoffmann KH. 2007. Ecdysteroid levels in Daphnia magna during a molt cycle: determination by radioimmunoassay (RIA) and liquid chromatographymass spectrometry (LC-MS). Gen Comp Endocrinol 151: 66-71. https://doi.org/10.1016/j.ygcen.2006.11.015
  30. Matozzo V, Gagne F, Marin MG, Ricciardi F, Blaise C. 2008. Vitellogenin as a biomarker of exposure to estrogenic compounds in aquatic invertebrates: a review. Environ Int 34: 531-545. https://doi.org/10.1016/j.envint.2007.09.008
  31. Nagasawa K, Treen N, Kondo R, Otoki Y. 2015. Molecular characterization of an estrogen receptor and estrogen-related receptor and their autoregulatory capabilities in two Mytilus species. Gene 564: 153-159. https://doi.org/10.1016/j.gene.2015.03.073
  32. Rewitz KF, Yamanaka N, O'Connor MB. 2010. Steroid hormone inactivation is required during the juvenile-adult transition in Drosophila. Dev Cell 19: 895-902. https://doi.org/10.1016/j.devcel.2010.10.021
  33. Sanders MB, Billinghurst Z, Depledge MH, Clare AS. 2005. Larval development and vitellin-like protein expression in Palaemon elegans larvae following xeno-oestrogen exposure. Integr Comp Biol 45: 51-60. https://doi.org/10.1093/icb/45.1.51
  34. Segawa S, Yang WT. 1990. Growth, moult, reproduction and filtering rate of an estuarine cladoceran, Diaphanosoma celebensis, in laboratory culture. Bull Plankton Soc Jpn 37: 145-155.
  35. Segner H, Caroll K, Fenske M, Janssen CR, Maack G, Pascoe D, Schafers C, Vandenberg GF, Watts M, Wenzel A. 2003. Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project. Ecotoxicol Environ Saf 54: 302-314. https://doi.org/10.1016/S0147-6513(02)00039-8
  36. Thornton JW, Need E, Crews D. 2003. Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Science 301: 1714-1717. https://doi.org/10.1126/science.1086185
  37. Tokishita S, Kato Y, Kobayashi T, Nakamura S, Ohta T, Yamagata H. 2006. Organization and repression by juvenile hormone of a vitellogenin gene cluster in the crustacean, Daphnia magna. Biochem Biophy Res Comm 345: 362-370. https://doi.org/10.1016/j.bbrc.2006.04.102
  38. Tufail M, Takeda M. 2009. Insect vitellogenin/lipophorin receptors: molecular structures, role in oogenesis, and regulatory mechanisms. J Insect Physiol 55: 87-103. https://doi.org/10.1016/j.jinsphys.2009.01.009
  39. Welshons WV, Thayer KA, Judy BM, Taylor JA, Curran EM, vom Saal F. 2003. Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environ Health Perspect 111: 994-1006. https://doi.org/10.1289/ehp.5494
  40. Xuereb B, Bezin L, Chaumot A, Budzinski H, Augagneur S, Tutundjian R, Garric J, Geffard O. 2011. Vitellogenin-like gene expression in freshwater amphipod Gammarus fossarum (Koch, 1835): functional characterization in females and potential for use as an endocrine disruption biomarker in males. Ecotoxicology 20: 1286-1299. https://doi.org/10.1007/s10646-011-0685-2