• 제목/요약/키워드: Chemical Detection

검색결과 1,715건 처리시간 0.023초

Highly Sensitive Fluorescent Probes for the Quantitative Determination of Singlet Oxygen (1O2)

  • Ahmed, Syed Rahin;Koh, Kwang-Nak;Kang, Nam-Lyong;Lee, Jae-Beom
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1608-1612
    • /
    • 2012
  • Singlet oxygen ($^1O_2$) is an important species for oxidation in biological processes. $^1O_2$ is implicated in the genotoxic effect, and plays an important role in the cell-signaling cascade and in the induction of gene expression. However, the rapid detection of $^1O_2$ in biological environments with sufficient specificity and sensitivity is hampered by its extremely low emission probability. Here, a layer-by-layer (LbL) film of CdTe quantum dots (QDs), polymers, and ascorbate have been designed as a rapid, highly selective, and sensitive fluorescence probe for $^1O_2$ detection. Upon reaction with $^1O_2$, the probe exhibits a strong photoluminescence (PL) response even at trace levels. This remarkable PL change should enable the probe to be used for $^1O_2$ detection in many chemical and biological systems and as an environmental sensor.

Nanotechnology in Biodevices

  • Choi, Jeong-Woo;Oh, Byung-Keun;Kim, Young-Kee;Min, Jun-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.5-14
    • /
    • 2007
  • Nanotechnology is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer. The technology has been applied to biodevices such as bioelectronics and biochips to improve their performances. Nanoparticles, such as gold (Au) nanoparticles, are the most widely used of the various other nanotechnologies for manipulation at the nanoscale as well as nanobiosensors. The immobilization of biomolecules is playing an increasingly important role in the development of biodevices with high performance. Nanopatteming technology, which is able to increase the density of chip arrays, offers several advantages, including cost lowering, simultaneous multicomponent detection, and the efficiency increase of biochemical reactions. A microftuidic system incorporated with control of nanoliter of fluids is also one of the main applications of nanotechnologies. This can be widely utilized in the various fields because it can reduce detection time due to tiny amounts of fluids, increase signal-to-noise ratio by nanoparticles in channel, and detect multi-targets simultaneously in one chamber. This article reviews nanotechnologies such as the application of nanoparticles for the detection of biomolecules, the immobilization of biomolecules at nanoscale, nanopatterning technologies, and the microfluidic system for molecular diagnosis.

Development of an Ultraviolet Raman Spectrometer for Standoff Detection of Chemicals

  • Ha, Yeon Chul;Lee, Jae Hwan;Koh, Young Jin;Lee, Seo Kyung;Kim, Yun Ki
    • Current Optics and Photonics
    • /
    • 제1권3호
    • /
    • pp.247-251
    • /
    • 2017
  • In this study, an ultraviolet Raman spectrometer was designed and fabricated to detect chemical contamination on the ground. The region of the Raman spectrum that indicated the characteristics of the chemicals was $350-3800cm^{-1}$. To fabricate a Raman spectrometer operating in this range, the layout and angle of optical components of the spectrometer were designed using a grating equation. Experimental devices were configured to measure the Raman spectra of chemicals based on the fabricated Raman spectrometer. The wavenumber of the spectrometer was calibrated by measuring the Raman spectrum of polytetrafluoroethylene, $O_2$, and $N_2$. The spectral range of the spectrometer was measured to be 23.46 nm ($3442cm^{-1}$) with a resolution of 0.195 nm ($30.3cm^{-1}$) at 253.65 nm. After calibration, the main Raman peaks of cyclohexane, methanol, and acetonitrile were found to be similar to the references within a relative error of 0.55%.

DNA Ligand - Redox Active Molecule Conjugates as an Electrochemical DNA Probe

  • Ihara, Toshihiro;Maruo, Voshiyuki;Uto, Yoshihiro;Takenaka, Shigeori;Takagi, Makoto
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.887-894
    • /
    • 1995
  • Toward the development of universal, sensitive, and convenient method of DNA (or RNA) detection, two kinds of electrochemically active DNA ligands. acridine - viologen and oligonucleotide - ferrocene conjugate, were prepared. Thermodynamic and electrochemical study revealed that these probes bound strongly to DNA, and showed a typical cyclic voltammograms, indicating a potential for use as a reversible electrochemical labelling agent for DNA. Especially, using the electrochemically active oligonucleotide, we have been able to demonstrate the detection of DNA at femtomole levels by HPLC equipped with ordinary electrochemical detector (ECD). These results lead to the conclusion that the redox-active probes are very useful for the microanalysis of nucleic acid due to the stabilily of the complexes, high detection sensitivity, and wide applicability to the target structures (single- and double strands) and sequences.

  • PDF

Simple and Ultrasensitive Chemically Amplified Electrochemical Detection of Ferrocenemethanol on 4-Nitrophenyl Grafted Glassy Carbon Electrode

  • Koh, Ahyeon;Lee, Junghyun;Song, Jieun;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권4호
    • /
    • pp.286-292
    • /
    • 2016
  • Chemically amplified electrochemical detection, redox-active probe being amplified its electrochemical anodic current by a sacrificial electron donor presenting in solution, holds great potential for simple and quantitative bioanalytical analysis. Herein, we report the chemically amplified electrochemical analysis that drastically enhanced a detection of ferrocenemethanol (analyte) by ferrocyanide (chemical amplifier) on 4-nitrophenyl grafted glassy carbon electrodes at $60^{\circ}C$. The glassy carbon electrode grafted with a 4-nitrophenyl group using an electrochemical reduction suppressed the oxidation of ferrocyanide and thus enabled detection of ferrocenemethanol with excellent selectivity. The ferrocenemethanol was detected down to an nM range using a linear sweep voltammetry under kinetically optimized conditions. The detection limit was improved by decreasing the concentration of the ferrocyanide and increasing temperature.

Intelligent Electronic Nose System for Detection of VOCs in Exhaled Breath

  • Byun, Hyung-Gi;Yu, Joon-Bu
    • 센서학회지
    • /
    • 제28권1호
    • /
    • pp.7-12
    • /
    • 2019
  • Significant progress has been made recently in detection of highly sensitive volatile organic compounds (VOCs) using chemical sensors. Combined with the progress in design of micro sensors array and electronic nose systems, these advances enable new applications for detection of extremely low concentrations of breath-related VOCs. State of the art detection technology in turn enables commercial sensor systems for health care applications, with high detection sensitivity and small size, weight and power consumption characteristics. We have been developing an intelligent electronic nose system for detection of VOCs for healthcare breath analysis applications. This paper reviews our contribution to monitoring of respiratory diseases and to diabetic monitoring using an intelligent electronic nose system for detection of low concentration VOCs using breath analysis techniques.

Halide Perovskites for X-ray Detection: The Future of Diagnostic Imaging

  • Nam Joong Jeon;Jung Min Cho;Jung-Keun Lee
    • 한국의학물리학회지:의학물리
    • /
    • 제33권2호
    • /
    • pp.11-24
    • /
    • 2022
  • X-ray detection has widely been applied in medical diagnostics, security screening, nondestructive testing in the industry, etc. Medical X-ray imaging procedures require digital flat detectors operating with low doses to reduce radiation health risks. Recently, metal halide perovskites (MHPs) have shown great potential in high-performance X-ray detection because of their attractive properties, such as strong X-ray absorption, high mobility-lifetime product, tunable bandgap, low-temperature fabrication, near-unity photoluminescence quantum yields, and fast photoresponse. In this paper, we review and introduce the development status of new perovskite X-ray detectors and imaging, which have emerged as a new promising high-sensitivity X-ray detection technology. We discuss the latest progress and future perspective of MHP-based X-ray detection in medical imaging. Finally, we compare the conventional detection methods with quantum-enhanced detection, pointing out the challenges and perspectives for future research directions toward perovskite-based X-ray applications.

회전각도를 이용한 알부민 농도 측정용 3차원 종이 칩 (Angular-based Measurement for Quantitative assay of Albumin in three-dimensional Paper-based analytical Device)

  • 김동호;정성근;이창수
    • Korean Chemical Engineering Research
    • /
    • 제58권2호
    • /
    • pp.286-292
    • /
    • 2020
  • 본 연구에서는 별도의 이미지 분석 장비를 사용하지 않고 정량적으로 알부민의 농도를 측정할 수 있는 회전각도를 이용한 3차원 종이 칩(3D-PADs)를 제시한다. 변색된 구간의 회전각도를 측정하는 간단한 방법으로 검출을 시연하였다. 3D-PADs는 왁스 프린터를 이용한 인쇄와 라미네이팅 과정을 거쳐 빠르게 제작할 수 있다. 3D-PADs는 샘플의 알부민을 검출하기 위하여 citrate buffer와 tetrabromophenol blue를 흡수시켰다. 3D-PAD의 흡수패드에 샘플 용액을 흡수시키면, 샘플 용액은 형성된 유로를 통하여 수직 및 수평 흐름을 통해 분석 구간으로 흐른다. 변색된 구간의 회전각도는 특정한 알부민의 농도를 나타내며, 알부민 측정의 신뢰할 수 있는 값임을 확인할 수 있었다.

Inductively Coupled Plasma 법을 이용한 희토류원소의 분석에 관한 연구 (A Study on the Determination of Rare Earth Elements by Inductively Coupled Plasma Spectrometry)

  • 최범석;김선태;김영만;이종욱
    • 대한화학회지
    • /
    • 제29권4호
    • /
    • pp.382-389
    • /
    • 1985
  • Inductively coupled plasma(ICP)법을 이용하여 희토류원소들을 정량분석할 때 플라스마 작동 조건이 미치는 영향에 관하여 연구하였다. 플라스마 작동시 시료운반기체의 사용량을 증가시키면 희토류원소 스펙트럼선들의 검출한계는 낮아지나 이온화 방해 영향이 증가되었다. RF power의 변화는 이온화 방해에는 큰 영향을 미치지 않지만 바탕세기에 대한 스펙트럼선 세기의 비율은 RF power가 감소될수록 증가되었다. 플라스마내에서 이온화 방해 영향이 작은 위치는 스펙트럼선의 spacial profile이 최대가 되는 부분보다 약간 높은 위치이었다. 희토류원소의 분석시 많이 이용되는 스펙트럼선들의 검출한계를 측정하고 비교적 간섭영향이 작은 스펙트럼선을 선정하였다.

  • PDF

Electrocatalytic Reduction of Hydrogen Peroxide on Silver Nanoparticles Stabilized by Amine Grafted Mesoporous SBA-15

  • Vinoba, Mari;Jeong, Soon-Kwan;Bhagiyalakshmi, Margandan;Alagar, Muthukaruppan
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3668-3674
    • /
    • 2010
  • Mesoporous SBA-15 was synthesized using tetraethylorthosilicate (TEOS) as the silica source and Pluronic (P123) as the structure-directing agent. The defective Si-OH groups present in SBA-15 were successively grafted with 3-chloropropyltrimethoxysilane (CPTMS) followed by tris-(2-aminoethyl) amine (TAEA) and/or tetraethylenepentamine (TEPA) for effective immobilization of silver nanoparticles. Grafting of TAEA and/or TEPA amine and immobilization of silver nanoparticles inside the channels of SBA-15 was verified by XRD, TEM, IR and BET techniques. The silver nanoparticles immobilized on TAEA and /or TEPA grafted SBA-15 was subjected for electrocatalytic reduction of hydrogen peroxide ($H_2O_2$). The TEPA stabilized silver nanoparticles show higher efficiency for reduction of $H_2O_2$ than that of TAEA, due to higher number of secondary amine groups present in TEPA. The amperometric analysis indicated that both the Ag/SBA-15/TAEA and Ag/SBA-15/TEPA modified electrodes required lower over-potential and hence possess high sensitivity towards the detection of $H_2O_2$. The reduction peak currents were linearly related to hydrogen peroxide concentration in the range between $3{\times}10^{-4}\;M$ and $2.5{\times}10^{-3}\;M$ with correlation coefficient of 0.997 and detection limit was $3{\times}10^{-4}\;M$.