DOI QR코드

DOI QR Code

Electrocatalytic Reduction of Hydrogen Peroxide on Silver Nanoparticles Stabilized by Amine Grafted Mesoporous SBA-15

  • Received : 2010.06.30
  • Accepted : 2010.10.09
  • Published : 2010.12.20

Abstract

Mesoporous SBA-15 was synthesized using tetraethylorthosilicate (TEOS) as the silica source and Pluronic (P123) as the structure-directing agent. The defective Si-OH groups present in SBA-15 were successively grafted with 3-chloropropyltrimethoxysilane (CPTMS) followed by tris-(2-aminoethyl) amine (TAEA) and/or tetraethylenepentamine (TEPA) for effective immobilization of silver nanoparticles. Grafting of TAEA and/or TEPA amine and immobilization of silver nanoparticles inside the channels of SBA-15 was verified by XRD, TEM, IR and BET techniques. The silver nanoparticles immobilized on TAEA and /or TEPA grafted SBA-15 was subjected for electrocatalytic reduction of hydrogen peroxide ($H_2O_2$). The TEPA stabilized silver nanoparticles show higher efficiency for reduction of $H_2O_2$ than that of TAEA, due to higher number of secondary amine groups present in TEPA. The amperometric analysis indicated that both the Ag/SBA-15/TAEA and Ag/SBA-15/TEPA modified electrodes required lower over-potential and hence possess high sensitivity towards the detection of $H_2O_2$. The reduction peak currents were linearly related to hydrogen peroxide concentration in the range between $3{\times}10^{-4}\;M$ and $2.5{\times}10^{-3}\;M$ with correlation coefficient of 0.997 and detection limit was $3{\times}10^{-4}\;M$.

Keywords

References

  1. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710. https://doi.org/10.1038/359710a0
  2. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548. https://doi.org/10.1126/science.279.5350.548
  3. Xu, J.; Luan, Z.; He, H.; Zhou, W.; Kevan, L. Chem. Mater. 1998, 10, 3690. https://doi.org/10.1021/cm980440d
  4. Kim, T. W.; Kleitz, F.; Paul, B.; Ryoo, R. J. Am. Chem. Soc. 2005, 127, 7601. https://doi.org/10.1021/ja042601m
  5. Liu, X.; Wang, A.; Yang, X.; Zhang, T.; Mou, C. Y.; Su, D. S.; Li, J. Chem. Mater. 2009, 21, 410. https://doi.org/10.1021/cm8027725
  6. Zhu, J.; Knya, Z.; Puntes, V. F.; Kiricsi, I.; Miao, C. X.; Ager, J. W.; Alivisatos, A. P. Langmuir 2003, 19, 4396. https://doi.org/10.1021/la0207421
  7. Rosenholm, J. M.; Linden, M. J. Controlled Release 2008, 128, 157. https://doi.org/10.1016/j.jconrel.2008.02.013
  8. Liu, Y.; Zhang, J.; Hou, W.; Zhu, J. J. Nanotechnology 2008, 19, 135707. https://doi.org/10.1088/0957-4484/19/13/135707
  9. Vinu, A.; Hossain, K. Z.; Ariga, K. J. Nanosci. Nanotechnol. 2005, 5, 347. https://doi.org/10.1166/jnn.2005.089
  10. Walcarius, A.; Etienne, M.; Lebeau, B. Chem. Mater. 2000, 15, 2161.
  11. Walcarius, A.; Etienne, M.; Sayen, S.; Lebeau, B. Electroanalysis 2003, 15, 414. https://doi.org/10.1002/elan.200390048
  12. Wan, Y.; Zhang, D.; Hao, N.; Zhao, D. Int. J. Nanotechnol. 2007, 4, 66. https://doi.org/10.1504/IJNT.2007.012316
  13. Bhagiyalakshmi, M.; Yun, L. J.; Anuradha, R.; Jang, H. T. J. Hazard. Mater. 2010, 175, 928. https://doi.org/10.1016/j.jhazmat.2009.10.097
  14. Brunel, D. Micropor. Mesopor. Mater. 1999, 27, 329. https://doi.org/10.1016/S1387-1811(98)00266-2
  15. Yang, W.; Yang, S.; Sun, W.; Sun, G.; Xin, Q. Electrochim. Acta 2006, 52, 9. https://doi.org/10.1016/j.electacta.2006.03.066
  16. Prater, D. N.; Rusek, J. J. Appl. Energy 2003, 74, 135. https://doi.org/10.1016/S0306-2619(02)00139-3
  17. Miley, G. H.; Luo, N.; Mather, J.; Burton, R.; Hawkins, G.; Gu, L.; Byrd, E.; Gimlin, R.; Shrestha, P. J.; Benavides, G.; Laystrom, J.; Carroll, D. J. Power Sources 2007, 165, 509. https://doi.org/10.1016/j.jpowsour.2006.10.062
  18. Matsubara, C.; Kawamoto, N.; Takamura, K. Analyst 1992, 117, 1781. https://doi.org/10.1039/an9921701781
  19. Li, J.; Dasgupta, P. K. Anal. Chem. 2000, 72, 5338. https://doi.org/10.1021/ac000611+
  20. Song, Y.; Wang, L.; Ren, C.; Zhua, G.; Li, Z. Sensor Actuat B-Chem. 2006, 114, 1001. https://doi.org/10.1016/j.snb.2005.07.061
  21. vanVenrooij, T. G. J.; Koper, M. T. M. Electrochim. Acta 1995, 40, 1689. https://doi.org/10.1016/0013-4686(95)00029-E
  22. Yang, W.; Yang, S.; Sun, W.; Sun, G.; Xin, Q. Electrochim. Acta 2006, 52, 9. https://doi.org/10.1016/j.electacta.2006.03.066
  23. Strbac, S.; Adzic, R. R. J. Electroanal. Chem. 1992, 337, 355. https://doi.org/10.1016/0022-0728(92)80549-J
  24. Flatgen, G.; Wasle, S.; Lubke, M.; Eickes, C.; Radhakrishnan, G.; Ertl, G. Electrochim. Acta 1999, 44, 4499. https://doi.org/10.1016/S0013-4686(99)00184-X
  25. Lin, D. H.; Jiang, Y. X.; Wang, Y. J. Nanomater. 2008, 473791.
  26. Zhao, Y.; Qi, Y.; Wei, Y.; Zhang, Y.; Zhang, S.; Yang, Y.; Liu, Z. Micropor. Mesopor. Mater. 2008, 111, 300. https://doi.org/10.1016/j.micromeso.2007.08.004
  27. Kim, S.; Ida, J.; Guliants, V. V.; Lin, J. Y. S. J. Phys. Chem. B 2005, 109, 6287. https://doi.org/10.1021/jp045634x
  28. Neimark, A. V.; Ravikovitch, P. I.; Grün, M.; Schüth, F.; Unger, K. K. J. Colloid Interface Sci. 1998, 207, 159. https://doi.org/10.1006/jcis.1998.5748
  29. Selvaraj, V.; Alagar, M. J. Bionanoscience 2008, 2, 54. https://doi.org/10.1166/jbns.2008.027
  30. Wang, S. T.; Yan, J. C. Mater. Lett. 2005, 59, 1383. https://doi.org/10.1016/j.matlet.2004.12.045
  31. Delvaux, M.; Walcarius, A.; Demoustier-Champagne, S. Anal. Chim. Acta 2004, 525, 221. https://doi.org/10.1016/j.aca.2004.08.054
  32. Pirault-Roy, L.; Kappenstein, C.; Guerin, M.; Eloirdi, R. J. Propulsion Power 2002, 18, 1235. https://doi.org/10.2514/2.6058

Cited by

  1. by Human Carbonic Anhydrase Covalently Immobilized onto Amine-Functionalized SBA-15 vol.115, pp.41, 2011, https://doi.org/10.1021/jp204661v
  2. vol.27, pp.10, 2011, https://doi.org/10.1021/la105029h
  3. Dendritic silver nanostructures obtained via one-step electrosynthesis: effect of nonanesulfonic acid and polyvinylpyrrolidone as additives on the analytical performance for hydrogen peroxide sensing vol.15, pp.10, 2013, https://doi.org/10.1007/s11051-013-1971-0
  4. Mesoporous materials and electrochemistry vol.42, pp.9, 2013, https://doi.org/10.1039/c2cs35322a
  5. Voltammetric behaviour of hydrogen peroxide at a silver electrode fabricated from a rewritable digital versatile disc (DVD) and its determination in water samples vol.5, pp.23, 2013, https://doi.org/10.1039/c3ay41557k
  6. H) vol.60, pp.5, 2013, https://doi.org/10.1002/jccs.201200530
  7. vol.31, pp.12, 2013, https://doi.org/10.1002/cjoc.201300487
  8. Polymer Nanofibers Incorporated with Silver Nanoparticles: Thermal Properties vol.39, pp.11, 2018, https://doi.org/10.1007/s10765-018-2446-4
  9. Carbonic anhydrase conjugated to nanosilver immobilized onto mesoporous SBA-15 for sequestration of CO2 vol.75, pp.None, 2010, https://doi.org/10.1016/j.molcatb.2011.11.010
  10. Catalytic application of silver nanoparticles immobilized to rice husk-SiO2-aminopropylsilane composite as recyclable catalyst in the aqueous reduction of nitroarenes vol.41, pp.None, 2010, https://doi.org/10.1016/j.catcom.2013.06.020
  11. The Synergistic Character of Highly N‐Doped Coconut-Shell Activated Carbon for Efficient CO 2 Capture vol.6, pp.34, 2010, https://doi.org/10.1002/slct.202102522