Nanotechnology in Biodevices

  • Choi, Jeong-Woo (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Oh, Byung-Keun (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Kim, Young-Kee (Department of Chemical Engineering, Hankyong National University) ;
  • Min, Jun-Hong (Samsung Advanced Institute of Technology)
  • Published : 2007.01.31

Abstract

Nanotechnology is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer. The technology has been applied to biodevices such as bioelectronics and biochips to improve their performances. Nanoparticles, such as gold (Au) nanoparticles, are the most widely used of the various other nanotechnologies for manipulation at the nanoscale as well as nanobiosensors. The immobilization of biomolecules is playing an increasingly important role in the development of biodevices with high performance. Nanopatteming technology, which is able to increase the density of chip arrays, offers several advantages, including cost lowering, simultaneous multicomponent detection, and the efficiency increase of biochemical reactions. A microftuidic system incorporated with control of nanoliter of fluids is also one of the main applications of nanotechnologies. This can be widely utilized in the various fields because it can reduce detection time due to tiny amounts of fluids, increase signal-to-noise ratio by nanoparticles in channel, and detect multi-targets simultaneously in one chamber. This article reviews nanotechnologies such as the application of nanoparticles for the detection of biomolecules, the immobilization of biomolecules at nanoscale, nanopatterning technologies, and the microfluidic system for molecular diagnosis.

Keywords

References

  1. Acharya, N., M. Sen, and H.-C. Chang. 1992. Heat transfer enhancement in coiled tubes by chaotic mixing. Int. J. Heat Mass Transfer 35: 2475-2489 https://doi.org/10.1016/0017-9310(92)90090-F
  2. Aponte, V. M., D. S. Finch, and D. M. Klaus. 2006. Considerations for non-invasive in-flight monitoring of astronaut immune status with potential use of MEMS and NEMS devices. Life Sci. 79: 1317-1333 https://doi.org/10.1016/j.lfs.2006.04.007
  3. Arenkov, P., A. Kukhtin, A. Gemmell, S. Voloshchuk, V. Chupeeva, and A. Mirzabekov. 2000. Protein microchips: Use for immunoassay and enzymatic reactions. Anal. Biochem. 278: 123-131 https://doi.org/10.1006/abio.1999.4363
  4. Bandyopadhyay, S. and M. Cahay. 2005. Proposal for a spintronic femto-Tesla magnetic field sensor. Physica E 27: 98-103 https://doi.org/10.1016/j.physe.2004.10.012
  5. Becker, H., M. Arundell, A. Harnisch, and D. Hulsenberg. 2002. Chemical analysis in photostructurable glass chips. Sens. Actuators B Chem. 86: 271-279 https://doi.org/10.1016/S0925-4005(02)00162-4
  6. Beebe, D. J., R. J. Adrian, M. G. Olsen, M. A. Stremler, H. Aref, and B.-H. Jo. 2001. Passive mixing in microchannels: Fabrication and flow experiments. Mec. Ind. 2: 343-348
  7. Berre, M. L., Y. Chen, C. Crozatier, and Z. L. Zhang. 2005. Electrocapillary force actuation of microfluidic elements. Microelectr. Eng. 78/79: 93-99 https://doi.org/10.1016/j.mee.2004.12.014
  8. Bohm, S., W. Olthius, and P. Bergveld. 1999. An electrochemically actuated micropump for use in a pushpushpull microdialysis based in-vivo monitoring system, pp. 880-881. In Proceedings of the Transducer '99: Tenth International Conference on Solid-State Sensors and Actuators, Sendai, Japan
  9. Boopathi, M., M. V. S. Suryanarayana, A. K. Nigam, P. Pandey, K. Ganesan, B. Singh, and K. Sekhar. 2006. Plastic antibody for the recognition of chemical warfare agent sulphur mustard. Biosen. Bioelectr. 21: 2339-2344 https://doi.org/10.1016/j.bios.2006.01.036
  10. Boyle, M. D. P. and K. J. Reis. 1987. Bacterial Fc receptors. Biotechnology 5: 697-703 https://doi.org/10.1038/nbt0787-697
  11. Buck, S. M., Y.-E. Lee, E. Park, H. Xu, M. A. Philbert, M. A. Brasuel, and R. Kopelman. 2004. Optochemical nanosensor PEBBLEs: Photonic explorers for bioanalysis with biologically localized embedding. Curr. Opin. Chem. Biol. 8: 540-546 https://doi.org/10.1016/j.cbpa.2004.08.011
  12. Butler, J. E., L. Ni, R. Nessler, K. S. Joshi, M. Suter, B. Rosenberg, J. Chang, W. R. Brown, and L. A. Cantarero. 1992. The physical and functional behavior of capture antibodies adsorbed on polystyrene. J Immunol. Methods 150: 77-90 https://doi.org/10.1016/0022-1759(92)90066-3
  13. Cao, Y. C., R. Jin, C. S. Thaxton, and C. A. Mirkin. 2005. A two-color-change nanoparticle-based method for DNA detection. Talanta 67: 449-455 https://doi.org/10.1016/j.talanta.2005.06.063
  14. Choi, H. G., W. C. Jung, J. Min, W. H. Lee, and J. W. Choi. 2001. Color image detection by biomolecular photoreceptor using bacteriorhodopsin-based complex LB film. Biosens. Bioelectr. 16: 925-935 https://doi.org/10.1016/S0956-5663(01)00211-1
  15. Choi, J. W., J. H. Park, W. Lee, B.-K. Oh, J. Min, and W. H. Lee. 2001. Fluorescence immunoassay of HDL and LDL using protein A LB film. J. Microbiol. Biotechnol. 11: 979- 985
  16. Choi, J. W., Y. S. Nam, and M. Fujihira. 2004. Nanoscale fabrication of biomolecular layer and its application to biodevices. Biotechnol. Bioprocess Engin. 9: 76-85 https://doi.org/10.1007/BF02932988
  17. Choi, J. W., Y. K. Kim, H. J. Kim, W. Lee, and G. H. Seong. 2006. Lab-on-a-chip for monitoring the quality of raw milk. J. Microbiol. Biotechnol. 16: 1229-1235
  18. Choi, J. W., Y. H. Jang, W. Lee, and B.-K. Oh. 2006. Scanning tunneling microscopy based ultrasensitive electrical detection method of proteins, p. 76. The Ninth World Congress on Biosensors
  19. Corman, T., P. Enoksson, and G. Stemme. 1997. Gas damping of electrostatically excited resonators. Sens. Actuators A Phys. 61: 249-255 https://doi.org/10.1016/S0924-4247(97)80270-1
  20. Corman, T., P. Enoksson, and G. Stemme. 1998. Deep wet etching of borosilicate glass using anodically bonded silicon substrate as mask. J. Micromech. Microeng. 8: 84-87 https://doi.org/10.1088/0960-1317/8/2/010
  21. Deamer, D. W. and M. Akeson. 2000. Nanopores and nucleic acids: Prospects for ultrarapid sequencing. Trends Biotechnol. 18: 147-151 https://doi.org/10.1016/S0167-7799(00)01426-8
  22. Diepold, T. and E. Obermeier. 1995. Smoothing of ultrasonically drilled holes in borosilicate glass by wet chemical etching, pp. 35-38. In: Proceeding of MME' '95, Copenhagen
  23. Esfand, R. and D. A. Tomalia. 2001. Poly(amidoamine) (PAMAM) dendrimers: From biomimicry to drug delivery and biomedical applications. Drug Discov. Today 6: 427- 436 https://doi.org/10.1016/S1359-6446(01)01757-3
  24. Ferretti, S., S. Paynter, D. A. Russell, and K. E. Sapsford. 2000. Self-assembled monolayers: A versatile tool for the formation of bio-surfaces. Trends Anal. Chem. 19: 530-539 https://doi.org/10.1016/S0165-9936(00)00032-7
  25. Feynman, R. P. 1992. There is plenty rooms at the bottom. J. Microelec. Tromech. Syst. 1: 60-66 https://doi.org/10.1109/84.128057
  26. Gerlach, T. and H. Wurmus. 1995. Working principle and performance of the dynamic micropump. Sens. Actuators A Phys. 50: 135-140 https://doi.org/10.1016/0924-4247(96)80097-5
  27. Gnani, E., A. Marchi, S. Reggiani, M. Rudan, and G. Baccarani. 2006. Quantum-mechanical analysis of the electrostatics in silicon-nanowire and carbon-nanotube FETs. Solid-State Electr. 50: 709-715 https://doi.org/10.1016/j.sse.2006.03.039
  28. Hahm, J.-I. and M. L. Charles. 2004. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4: 51-54 https://doi.org/10.1021/nl034853b
  29. Hulsenberg, D. 1997. Glasses for microsystems technology. Microelectr. J. 28: 419-432 https://doi.org/10.1016/S0026-2692(96)00071-7
  30. IBM Corp., US patent No. 4882245
  31. Jianrong, C., M. Yuqing, H. Nongyue, W. Xiaohua, and L. Sijiao. 2004. Nanotechnology and biosensors. Biotechnol. Adv. 22: 505-518 https://doi.org/10.1016/j.biotechadv.2004.03.004
  32. Johnson, T. J., D. Ross, and L. E. Locascio. 2002. Rapid microfluidic mixing. Anal. Chem. 74: 45-51 https://doi.org/10.1021/ac010895d
  33. Katz, E., I. Willner, and J. Wang. 2004. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16: 19-44 https://doi.org/10.1002/elan.200302930
  34. Katz, E., Y. Weizmann, and I. Willner. 2005. Magnetoswitchable reactions of DNA monolayers on electrodes: Gating the processes by hydrophobic magnetic nanoparticles. J. Am. Chem. Soc. 127: 9191-9200 https://doi.org/10.1021/ja0517771
  35. Kawazumi, H., K. V. Gobi, K. Ogino, H. Maeda, and N. Miura. 2005. Compact surface plasmon resonance (SPR) immunosensor using multichannel for simultaneous detection of small molecule compounds. Sens. Actuators B Chem. 108: 791-796 https://doi.org/10.1016/j.snb.2004.11.069
  36. Kim, B. S., S. J. Kang, S. B. Lee, W. Hwang, and K. S. Kim. 2005. Simple method to correct gene-specific dye bias from partial dye swap information of a DNA microarray experiment. J. Microbiol. Biotechnol. 15: 1377-1383
  37. Kim, H. S., Y.-M. Bae, Y.-K. Kim, B.-K. Oh, and J.-W. Choi. 2006. Antibody layer fabrication for protein chip to detect E. coli O157:H7 using microcontact printing technique. J. Microbiol. Biotechnol. 16: 141-144
  38. Kim, H. S., C. H. Lee, D. B. Lee, S. Y. Oh, and J.-W. Choi. 2006. Bio electroluminescent device composed of viologen/ chlorophyll a hetero-structure. IEEE Trans. Nanotechnol. (Submitted)
  39. Kim, P. I., B. D. Erickson, and C. E. Cerniglia. 2005. A membrane-array method to detect specific human intestinal bacteria in fecal samples using reverse transcriptase-PCR and chemiluminescence. J. Microbiol. Biotechnol. 15: 310- 320
  40. Kobayashi, H. and M. W. Brechbiel. 2005. Nano-sized MRI contrast agents with dendrimer cores. Adv. Drug Deliv. Rev. 57: 2271-2286 https://doi.org/10.1016/j.addr.2005.09.016
  41. Kwak, S. K., G. S. Lee, D. J. Ahn, and J. W. Choi, 2004. Pattern formation of cytochrome c by microcontact printing and dip-pen nanolithography. Mater. Sci. Engin. C 24: 151- 155 https://doi.org/10.1016/j.msec.2003.09.015
  42. Larsen, U. D., W. Rong, and P. Telleman. 1999. Design of rapid micromixers using CFD, pp. 200-203. In: Transducers '99, Sendai
  43. Li, Z., K. Wang, W. Tan, J. Li, Z. Fu, C. Ma, H. Li, X. He, and J. Liu. 2006. Immunofluorescent labeling of cancer cells with quantum dots synthesized in aqueous solution. Anal. Biochem. 354: 169-174 https://doi.org/10.1016/j.ab.2006.04.029
  44. Lee, W., S. S. Lim, B.-K. Choi, and J. W. Choi. 2006. Protein array fabricated by microcontact printing for miniaturized immunoassay. J. Microbiol. Biotechnol. 16: 1216-1221
  45. Lee, W., B.-K. Oh, Y. W. Kim, and J. W. Choi. 2006. Signal enhancement of surface plasmon resonance based on gold nanoparticle-antibody complex for immunoassay. J. Nanosci. Nanotechnol. (In press)
  46. Lee, K.-B., S.-J. Park, C. A. Mirkin, J. C. Smith, and M. Mrksich. 2002. Protein nanoarrays generated by dip-pen nanolithography. Science 295: 1702-1705 https://doi.org/10.1126/science.1067172
  47. Lee, S. W., B.-K. Oh, R. G. Sanedrin, K. Salaita, T. Fujigaya, and C. A. Mirkin. 2006. Biologically active protein nanoarrays generated using parallel dip-pen nanolithography. Adv. Mater. 18: 1133-1136 https://doi.org/10.1002/adma.200600070
  48. Lorenz, H., M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud. 1998. High-aspect-ratio, ultrathick, negativetone near UV photoresist and its applications for MEMS. Sens. Actuators A Phys. 64: 33-39 https://doi.org/10.1016/S0924-4247(98)80055-1
  49. Marken, F., M. L. Gerrard, I. M. Mellor, R. J. Mortimer, C. E. Madden, S. Fletcher, K. Holt, J. S. Foord, R. H. Dahm, and F. Page. 2001. Voltammetry at carbon nanofiber electrodes. Electrochem. Communi. 3: 177-180 https://doi.org/10.1016/S1388-2481(01)00132-1
  50. McDonald, J. C., D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides. 2000. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21: 27-40 https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
  51. Mendez-Vilas, A., M. G. Donoso, J. L. Gonzalez-Carrasco, and M. L. Gonzalez-Martin. 2006. Looking at the microtopography of polished and blasted Ti-based biomaterials using atomic force microscopy and contact angle goniometry. Colloids Surf B Biointerfaces 52: 157-166 https://doi.org/10.1016/j.colsurfb.2006.05.002
  52. Miyake, R., T. S. J. Lammerink, M. Elwenspoek, and J. H. J. Fluitman. 1993. Micromixer with fast diffusion, pp. 248- 253. In: MEMS'93, Florida
  53. Mokrani, A., C. Castelain, and H. Peerhossaini. 1997. The effect of chaotic advection on heat transfer. Int. J. Heat Mass Transfer 40: 3089-3104 https://doi.org/10.1016/S0017-9310(96)00361-4
  54. Morhard, F., J. P. R. Dahint, and M. Grunze. 2000. Immobilization of antibodies in micropatterns for cell detection by optical diffraction. Sens. Actuators B Chem. 70: 232-242 https://doi.org/10.1016/S0925-4005(00)00574-8
  55. Murphy. L. 2006. Biosensors and bioelectrochemistry. Curr. Opin. Chem. Biol. 10: 177-184 https://doi.org/10.1016/j.cbpa.2006.02.023
  56. Nyborg, W. L. M. 1965. Acoustic streaming, pp. 265-331. In W. P. Mason (ed.), Physical Acoustics, Vol. 2B. Academic Press, NY, U.S.A
  57. Oh, B.-K., Y.-K. Kim, Y. M. Bae, W. H. Lee, and J. W. Choi. 2002. Detection of Escherichia coli O157:H7 using immunosensor based on surface plasmon resonance. J. Microbiol. Biotechnol. 12: 780-786
  58. Oh, B.-K., Y. K. Kim, W. Lee, Y. M. Bae, W. H. Lee, and J. W. Choi. 2003. Immunosensor for detection of Legionella pneumophila using surface plasmon resonance. Biosens. Bioelectron. 18: 605-611 https://doi.org/10.1016/S0956-5663(03)00032-0
  59. Oh, B.-K., Y. K. Kim, K. W. Park, W. H. Lee, and J. W. Choi. 2004. Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium. Biosens. Bioelectr. 19: 1497-1504 https://doi.org/10.1016/j.bios.2003.12.009
  60. Oh, S. J., S. J. Cho, C. O. Kim, and J. W. Park. 2002. Characteristics of DNA microarray fabricated on various aminosilane layers. Langmuir 18: 1764-1769 https://doi.org/10.1021/la0113522
  61. Ruiz-Taylor, L. A., T. L. Martin, F. G. Zaugg, K. Witte, P. Indermuhle, S. Nock, and P. Wagner. 2001. Monolayers of derivatized poly(L-lysine)-grafted poly(ethylene glycol) on metal oxides as a class of biomolecular interfaces. Proc. Natl. Acad. Sci. USA 98: 852-857
  62. Taton, T. A., C. A. Mirkin, and R. L. Letsinger. 2000. Scanometric DNA array detection with nanoparticle probes. Science 289: 1757-1760 https://doi.org/10.1126/science.289.5485.1757
  63. Tsai, J.-H. and L. Lin. 2002. Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump. Sens. Actuators A Phys. 3325: 1-7
  64. Vijayendran, R. A. and D. E. Leckband. 2001. A quantitative assessment of heterogeneity for surface-immobilized proteins. Anal. Chem. 73: 471-480 https://doi.org/10.1021/ac000523p
  65. Wang, J. 2005. Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis 17: 7-14 https://doi.org/10.1002/elan.200403113
  66. Wilson, D. S., J. Wu, P. Peluso, and S. Nock. 2002. Improved method for pepsinolysis of mouse $IgG_{1}$ molecules to $F(ab')_{2}$ fragments. J. Immunol. Methods 260: 29-36 https://doi.org/10.1016/S0022-1759(01)00514-2
  67. Yamaguchi, A., P. Jin, H. Tsuchiyama, T. Masuda, K. Sun, S. Matusuo, and H. Misawa. 2002. Anal. Chim. Acta 468: 143 https://doi.org/10.1016/S0003-2670(02)00634-7
  68. Yang, Z., S. Matsumoto, H. Goto, M. Matsumoto, and R. Maeda. 2001. Ultrasonic micromixer for microfluidic systems. Sens. Actuators A Phys. 93: 266-272 https://doi.org/10.1016/S0924-4247(01)00654-9
  69. Yezhelyev, M. V., X. Gao, Y. Xing, A. Al-Hajj, S. Nie, and R. M. O'Regan. 2006. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol. 7: 657-667 https://doi.org/10.1016/S1470-2045(06)70793-8
  70. Zhu, H., M. Bilgin, R. Bangham, D. Hall, A. Casamayor, P. Bertone, N. Lan, R. Jansen, S. Bidlingmaier, T. Houfek, et al. 2001. Global analysis of protein activities using proteome chips. Science 293: 2101-2105 https://doi.org/10.1126/science.1062191
  71. Zhu, X. and E. S. Kim. 1998. Microfluidic motion generation with acoustic waves. Sens. Actuators A Phys. 66: 335-360 https://doi.org/10.1016/S0924-4247(98)00008-9