• Title/Summary/Keyword: Chemical Detection

Search Result 1,715, Processing Time 0.029 seconds

화학오염운 탐지를 위한 접촉식 화학탐지기를 탑재한 무인기와 원거리 화학탐지기의 복합 운용개념 고찰 (Hybrid Operational Concept with Chemical Detection UAV and Stand-off Chemical Detector for Toxic Chemical Cloud Detection)

  • 이명재;정유진;정영수;이재환;남현우;박명규
    • 한국군사과학기술학회지
    • /
    • 제23권3호
    • /
    • pp.302-309
    • /
    • 2020
  • Early-detection and monitoring of toxic chemical gas cloud with chemical detector is essential for reducing the number of casualties. Conventional method for chemical detection and reconnaissance has the limitation in approaching to chemically contaminated site and prompt understanding for the situation. Stand-off detector can detect and identify the chemical gas at a long distance but it cannot know exact distance and position. Chemical detection UAV is an emerging platform for its high mobility and operation safety. In this study, we have conducted chemical gas cloud detection with the stand-off chemical detector and the chemical detection UAV. DMMP vapor was generated in the area where the cloud can be detected through the field of view(FOV) of stand-off chemical detector. Monitoring the vapor cloud with standoff detector, the chemical detection UAV moved back and forth at the area DMMP vapor being generated to detect the chemical contamination. The hybrid detection system with standoff cloud detection and point detection by chemical sensors with UAV seems to be very efficient as a new concept of chemical detection.

화학재난 현장에서의 사건원인 화학물질 탐지절차 연구 (On the study of Chemical Disaster Cause Chemical Detection Process)

  • Kim, Sungbum;Ahn, Seungyoung;Lee, Jinhwan
    • 한국재난정보학회 논문집
    • /
    • 제10권3호
    • /
    • pp.452-457
    • /
    • 2014
  • 화학재난 발생시 현장대응 요원들은 사건 원인물질의 성상과 잔류오염 농도를 신속 정확하게 파악해야 한다. 또한 화학재난 현장에서의 적절한 대응절차 진행을 위해서는 화학물질의 성상과 오염농도 확인은 필수적이다. 이를 위해 현장에서 사용하는 각 장비의 특징을 알아보고자 한다. 현장대응장비는 모든 화학물질을 확인할 수 없으며, 각 장비별로 물질탐지에 제한적이다. 장비별 물질탐지 범위와 상호보완성을 고려해야 한다. 본 연구에서는 현장 활용장비인 간이탐지 킷과 검지관식 탐지장비, 전자식 탐지장비의 신속한 현장 활용을 위한 대응절차를 마련하여 현장대응에 도움을 주고자 한다.

수동형 FTIR 분광계에서 초동 탐지 기법을 이용한 고속 원거리 화학 가스 탐지 알고리즘 (Fast Remote Detection Algorithms for Chemical Gases Using Pre-Detection with a Passive FTIR Spectrometer)

  • 유형근;박동조;남현우;박병황
    • 한국군사과학기술학회지
    • /
    • 제21권6호
    • /
    • pp.744-751
    • /
    • 2018
  • In this paper, we propose a fast detection and identification algorithm of chemical gases with a passive FTIR spectrometer. We use a pre-detection algorithm that can reduce the spatial region effectively for gas detection and the candidates of the target. It is possible to remove background spectra effectively from measured spectra with the least-squares method. The CC(Correlation Coefficients) and the SNR(Signal-to-Noise Ratio) methods are used for the detection of target gases. The proposed pre-detection algorithm allows the total process of chemical gas detection to be performed with lower complexity compared with the conventional algorithms. This paper can help developing real-time chemical detection instruments and various applications of FTIR spectrometers.

Nondestructive Detection of Defect in a Pipe Using Thermography

  • Choi, Hee-Seok;Joung, Ok-Jin;Kim, Young-Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1413-1416
    • /
    • 2005
  • An infrared temperature sensor module developed for the detection of defects in a plate was modified to use in a cylinder. A set of optical fiber leads and a mechanism maintaining sensor-object distance constant were utilized for the modification of the IR sensor module. The detection performance was experimentally investigated, and the measured temperature was also compared with computed temperature distribution. The experimental outcome indicates that the detection of a simulated defect is readily available. The temperature distribution is better for defect detection than that with the previous device. In addition, the measured distribution is comparable to the calculated one using a heat conduction equation. The developed device of defect detection is suitable to be utilized in chemical processes where most of vessels and piping systems are in the shape of a cylinder.

  • PDF

Electrochemical Determination of As(III) at Nanoporous Gold Electrodes with Controlled Surface Area

  • Seo, Min Ji;Kastro, Kanido Camerun;Kim, Jongwon
    • 대한화학회지
    • /
    • 제63권1호
    • /
    • pp.45-50
    • /
    • 2019
  • Because arsenic (As) is a chemical substance toxic to humans, there have been extensive investigations on the development of As detection methods. In this study, the electrochemical determination of As on nanoporous gold (NPG) electrodes was investigated using anodic stripping voltammetry. The electrochemical surface area of the NPG electrodes was controlled by changing the reaction times during the anodization of Au for NPG preparation, and its effect on the electrochemical behavior during As detection was examined. The detection efficiency of the NPG electrodes improved as the roughness factor of the NPG electrodes increased up to around 100. A further increase in the surface area of the NPG electrodes resulted in a decrease of the detection efficiency due to high background current levels. The most efficient As detection efficiency was obtained on the NPG electrodes prepared with an anodization time of 50 s. The effects of the detection parameters and of the Cu interference in As detection were investigated and the NPG electrode was compared to flat Au electrodes.

다중벽 탄소나노튜브를 이용한 철근 부식 검출 센서 제작 연구 (A study on the Corrosion Detection Sensor using Multi-Wall Carbon Nanotube)

  • 박수빈;김성연;이수정;최문정;홍영준;권성준;유봉영;윤상화
    • 한국표면공학회지
    • /
    • 제54권4호
    • /
    • pp.194-199
    • /
    • 2021
  • In this study, rebar corrosion detection sensor was fabricated using multi-walled carbon nanotubes (MWCNTs). MWCNTs were pre-treated in the acid electrolytes to attach the carboxylic acid to the surface of MWCNTs. The fabricated sensor was attached on the surface of rebar and it detected the corrosion of steel using LCR meter with variation of capacitance. The surface morphology and electrical properties were characterized using scanning electron microscope (SEM) and electrical test equipment, respectively. To verify the corrosion detection characteristics, comparison experiment using plastic bar was performed. Moreover, mechanism of corrosion detection sensor was discussed.

Nanosecond Gated Raman Spectroscopy for Standoff Detection of Hazardous Materials

  • Chung, Jin Hyuk;Cho, Soo Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3547-3552
    • /
    • 2014
  • Laser Raman spectroscopy is one of the most powerful technologies for standoff detection of hazardous materials including explosives. Supported by recent development of laser and sensitive ICCD camera, the technology can identify trace amount of unknown substances in a distance. Using this concept, we built a standoff detection system, in which nanosecond pulse laser and nanosecond gating ICCD technique were delicately devised to avoid the large background noise which suppressed weak Raman signals from the target sample. In standoff detection of explosives which have large kill radius, one of the most important technical issues is the detection distance from the target. Hence, we focused to increase the detection distance up to 54 m by careful optimization of optics and laser settings. The Raman spectra of hazardous materials observed at the distance of 54 m were fully identifiable. We succeeded to detect and identify eleven hazardous materials of liquid or solid particles, which were either explosives or chemical substances used frequently in chemical plants. We also performed experiments to establish the limit of detection (LOD) of HMX at 10 m, which was estimated to be 6 mg.

Detection of ${\alpha}-Cyclodextrin$ and E.coli Cell Using Polydiacetylene Supramolecules

  • Lee, Gil-Sun;Choi, Hyun;Lee, Chung-Wan;Ahn, Dong-June;Oh, Min-Kyu;Kim, Jong-Man
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.306-306
    • /
    • 2006
  • We immobilized and patterned PDA vesicles on solid substrate using micro arrayer, which have moieties to react with chemical and biological materials. Immobilized vesicle system was developed since it possesses many advantages in multiple screening, durable stability, and higher sensitivity. We applied polydiacetylene supramolecules to chemical and biological sensors for detection of ${\alpha}-cyclodextrin$ and E.coli cell selectively. This detection method could be applied as DNA chip, protein chip, and cell chip for multiple screening as well as chemical sensor by modifying the functional groups of diacetylene monomer.

  • PDF

Crack detection based on ResNet with spatial attention

  • Yang, Qiaoning;Jiang, Si;Chen, Juan;Lin, Weiguo
    • Computers and Concrete
    • /
    • 제26권5호
    • /
    • pp.411-420
    • /
    • 2020
  • Deep Convolution neural network (DCNN) has been widely used in the healthy maintenance of civil infrastructure. Using DCNN to improve crack detection performance has attracted many researchers' attention. In this paper, a light-weight spatial attention network module is proposed to strengthen the representation capability of ResNet and improve the crack detection performance. It utilizes attention mechanism to strengthen the interested objects in global receptive field of ResNet convolution layers. Global average spatial information over all channels are used to construct an attention scalar. The scalar is combined with adaptive weighted sigmoid function to activate the output of each channel's feature maps. Salient objects in feature maps are refined by the attention scalar. The proposed spatial attention module is stacked in ResNet50 to detect crack. Experiments results show that the proposed module can got significant performance improvement in crack detection.

화학사고 초기대응자를 위한 검지관식 탐지장비의 반응성 연구 (The chemical reactivity of detecting tube detection equipment for incident responder)

  • Ahn, Seung-Young;Kim, Jungmin;Kim, Sungbum;Chun, Kwangsoo;Lee, Jin-Seon;Park, Choonhwa
    • 한국재난정보학회 논문집
    • /
    • 제10권1호
    • /
    • pp.33-39
    • /
    • 2014
  • 화학사고 발생 시 현장 초기대응자들은 사고 원인물질과 농도를 신속하고 손쉽게 확인하기 위한 방식으로, 미국 환경청(EPA) 초기대응팀에서도 널리 사용하고 있는 직독식 탐지장비를 이용하고 있다. 환경부에서는 검지관식 가스 탐지장비를 직독식 탐지장비로 이용하여 사고 발생 시 현장에서 이용하고 있고, 검지관식 가스탐지기는 신속한 원인 물질 확인과 정밀한 분석 전에 전략적으로 대략적인 오염물질의 정량과 정성을 확인할 수 있는 유용한 장비이다. 그러나 현장 초기대응자들의 직독식 탐지장비의 사용방법에 대한 이해 부족과 단순 수치로만 확인하려는 방식으로 인해 탐지결과의 정확성에 대한 의문점을 늘 제기해 왔다. 본 논문에서는 사고 현장에서 정확한 탐지 결과를 얻기 위해 환경부에서 사용하고 있는 검지관식 가스탐지기인 Kitagawa와 Draeger 탐지기의 물질 반응성을 확인하여 초기 대응자들의 현장 탐지결과의 정확성을 높이고자 하였다.