Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.12.3547

Nanosecond Gated Raman Spectroscopy for Standoff Detection of Hazardous Materials  

Chung, Jin Hyuk (Institute of Defense Advanced Technology Research, Agency for Defense Development (ADD))
Cho, Soo Gyeong (Institute of Defense Advanced Technology Research, Agency for Defense Development (ADD))
Publication Information
Abstract
Laser Raman spectroscopy is one of the most powerful technologies for standoff detection of hazardous materials including explosives. Supported by recent development of laser and sensitive ICCD camera, the technology can identify trace amount of unknown substances in a distance. Using this concept, we built a standoff detection system, in which nanosecond pulse laser and nanosecond gating ICCD technique were delicately devised to avoid the large background noise which suppressed weak Raman signals from the target sample. In standoff detection of explosives which have large kill radius, one of the most important technical issues is the detection distance from the target. Hence, we focused to increase the detection distance up to 54 m by careful optimization of optics and laser settings. The Raman spectra of hazardous materials observed at the distance of 54 m were fully identifiable. We succeeded to detect and identify eleven hazardous materials of liquid or solid particles, which were either explosives or chemical substances used frequently in chemical plants. We also performed experiments to establish the limit of detection (LOD) of HMX at 10 m, which was estimated to be 6 mg.
Keywords
Raman spectroscopy; Standoff detection; Nanosecond gating; Hazardous material; Explosives;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Akeson, M.; Nordberg, M.; Ehlerding, A.; Nilsson, L.; Ostmark, H.; Strombeck, P. Proc. SPIE 2011, 8017, 8017C-1.
2 Pettersson, A.; Johansson, I.; Wallin, S.; Markus, N.; Ostmark, H. Propell. Explos. Pyrotech. 2009, 34, 297.   DOI
3 Annual Report FY 2008; Joint Improvised Explosive Device Defeat Organization (JIEDDO), Washington D.C., USA, 2009.
4 Chung, J. H.; Cho, S. G. Bull. Korean Chem. Soc. 2013, 34, 1668.   DOI
5 Sharma, S. K.; Angel, S. M.; Chosh, M.; Hubble, H. W.; Lucey, P. G. Appl. Spectrosc. 2002, 56, 699.   DOI
6 Gillet, P.; Le Cleach, A.; Madon, M. J. Geophys. Res. 1990, 95, 21635.   DOI
7 Clarkson, J.; Smith, W. E.; Batcheler, D. N.; Smith, D. A.; Coats, A. M. J. Mol. Struct. 2003, 648, 203.   DOI
8 Rice, B. M.; Chabalowski, C. F. J. Phys. Chem. A 1997, 101, 8720.   DOI
9 Brand, H. V.; Rabie, R. L.; Funk, D. J.; Diaz-Acosta, I.; Pulay, P.; Lippert, T. K. J. Phys. Chem. B 2002, 106, 10594.   DOI
10 Goetz, F.; Brill, T. B. J. Phys. Chem. 1979, 83, 340.   DOI
11 Gaft, M.; Nagli, L. Opt. Mater. 2008, 30, 1739.   DOI
12 Oxley, J.; Smith, J.; Brady, J.; Dubnikova, F.; Kosloff, R.; Zeiri, L.; Zeiri, Y. Appl. Spectro. 2008, 62, 8.   DOI
13 Savitsky, A.; Golay, M. J. E. Anal. Chem. 1964, 36, 1627.   DOI
14 Fleger, Y.; Nagli, L.; Gaft, M.; Rosenbluh, M. J. Lumines. 2009, 129, 979.   DOI
15 Carter, J. C.; Angel, S. M.; Lawrence-Snyder, M.; Scaffidi, J.; Whipple, R. E.; Reynolds, J. G. Appl. Spectrosc. 2005, 59, 769.   DOI
16 Efremov, E. V.; Buijs, J. B.; Gooijer, C.; Ariese, F. Appl. Spectrosc. 2007, 61, 571.   DOI