• Title/Summary/Keyword: Chemical Detection

Search Result 1,715, Processing Time 0.026 seconds

Research Trends in Chemical Analysis Based Explosive Detection Techniques (화학분석 기반 폭발물 탐지 기술 동향)

  • Moon, Sanghyeon;Lee, Wonjoo;Lee, Kiyoung
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • This paper reviews the principles, advantages, and disadvantages of main explosives detection technologies, as well as research areas needed in the future. Explosives detection technology can be classified into spectroscopic methods, sensor techniques, and olfactory type sensors. There have been advances in explosives detection technology, however studies on discriminatory, portability, and sensitivity for explosives detection still remained competitive.

Detecting Techniques for Marine-derived Pathogens: Grouping and Summary (해양 유래의 병원성 미생물 검출방법: 분류 및 요약)

  • Hwang, Byeong Hee;Cha, Hyung Joon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Marine-derived pathogens threat health and life of human and animals. Therefore, rapid and specific detection methods need to be developed. Here, we summarized various groups of detection methods, including conventional method, flow cytometry, nucleic acid-based method, and protein-based method. In addition, perspective of detection technique was discussed as a unified detection system for pathogens.

Immunosensor for Detection of Escherichia coli O157:H7 Using Imaging Ellipsometry

  • Bae Young-Min;Park Kwang-Won;Oh Byung-Keun;Choi Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1169-1173
    • /
    • 2006
  • Imaging ellipsometry (IE) for detection of binding of Escherichia coli O157:H7 (E. coli O157:H7) to an immunosensor is reported. A protein G layer, chemically bound to a self-assembled layer of 11-mercaptoundecanoic acid (11-MUA), was adopted for immobilization of monoclonal antibody against E. coli O157:H7 (Mab). The immobilization of antibody was investigated using surface plasmon resonance. To fabricate antibody spots on a gold surface, protein G solution was spotted onto the gold surface modified with an 11-MUA layer, followed by immobilizing Mab on the protein G spot. Ellipsometric images of the protein G spot, the Mab spot, and Mab spots with binding of E. coli O157:H7 in various concentrations were acquired using the IE system. The change of mean optical intensity of the Mab spots in the ellipsometric images indicated that the lowest detection limit was $10^3$CFU/ml for E. coli O157:H7. Thus, IE can be applied to an immunosensor for detection of E. coli O157:H7 as a detection method with the advantages of allowing label-free detection, high sensitivity, and operational simplicity.

Real-time comprehensive image processing system for detecting concrete bridges crack

  • Lin, Weiguo;Sun, Yichao;Yang, Qiaoning;Lin, Yaru
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.445-457
    • /
    • 2019
  • Cracks are an important distress of concrete bridges, and may reduce the life and safety of bridges. However, the traditional manual crack detection means highly depend on the experience of inspectors. Furthermore, it is time-consuming, expensive, and often unsafe when inaccessible position of bridge is to be assessed, such as viaduct pier. To solve this question, the real-time automatic crack detecting system with unmanned aerial vehicle (UAV) become a choice. This paper designs a new automatic detection system based on real-time comprehensive image processing for bridge crack. It has small size, light weight, low power consumption and can be carried on a small UAV for real-time data acquisition and processing. The real-time comprehensive image processing algorithm used in this detection system combines the advantage of connected domain area, shape extremum, morphology and support vector data description (SVDD). The performance and validity of the proposed algorithm and system are verified. Compared with other detection method, the proposed system can effectively detect cracks with high detection accuracy and high speed. The designed system in this paper is suitable for practical engineering applications.

The Design and Test of the Stand-off Surface Chemical Contaminant Detection System based on Raman Spectroscopy (비접촉식 지표면 화학 오염 탐지용 라만 분광시스템 설계 및 성능확인)

  • Koh, Young Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.433-440
    • /
    • 2019
  • In order to detect toxic chemical spread on field ground, we developed stand-off Raman spectrometer system which employed a deep UV laser. In this paper, the design and specification of various components in the spectrometer system are described. Some results when the detection system was tested on the outdoor roads are shown, which may help researching stand-off chemical detectors based on Raman spectroscopy.

Surface Plasmon Resonance Immunosensor for Detection of Legionella pneumophila

  • Oh, Byung-Keun;Lee, Woochang;Bae, Young-Min;Lee, Won-Hong;Park, Jeong-Woo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.112-116
    • /
    • 2003
  • An immunosensor based on surface plasmon resonance (SPR) onto a protein G layer by Self-assembly technique was developed for detection of Legionella pneumophila. The protein G layer by self-assembly technique was fabricated on a gold (Au) surface by adsorbing the 11-mercaptoundecanoic acid (MUA) and an activation process for the chemical binding of the free amino (-NH$_2$) of protein G and 11-(MUA) using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDAC) in series. The formation of the protein G layer by self-assembly technique on the Au Substrate and the binding of the antibody and antigen in series were confirmed by SPR spectroscopy. The Surface topographies of the fabricated thin films on an Au substrate were also analyzed by using an atomic force microscope (AFM). Consequently, an immunosensor for the detection of L. pneumophila using SPR was developed with a detection limit of up to 10$^2$CFU per mL.

Microcystin Detection Characteristics of Fluorescence Immunochromatography and High Performance Liquid Chromatography

  • Pyo, Dong-Jin;Park, Geun-Young;Choi, Jong-Chon;Oh, Chang-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.268-272
    • /
    • 2005
  • Different detection characteristics of fluorescence immunochromatography method and high performance liquid chromatography (HPLC) method for the analysis of cyanobacterial toxins were studied. In particular, low and high limits of detection, detection time and reproducibility and detectable microcystin species were compared when fluorescence immunochromatography method and high performance liquid chromatography method were applied for the detection of microcystin (MC), a cyclic peptide toxin of the freshwater cyanobacterium Microcystis aeruginosa. A Fluorescence immunochromatography assay system has the unique advantages of short detection time and low detection limit, and high performance liquid chromatography detection method has the strong advantage of individual quantifications of several species of microcystins.

Colorimetric Detection of Chelating Agents Using Polydiacetylene Vesicles (폴리다이아세틸렌 베시클을 이용한 킬레이트제의 색전이 검출)

  • Park, Moo-Kyung;Kim, Kyung-Woo;Ahn, Dong-June;Oh, Min-Kyu
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.348-351
    • /
    • 2011
  • In this research, we developed a sensor system which can easily detect several chelating agents using polydiacetylene(PDA) vesicles. In comparison to other sensors, PDA based sensor has several advantages. First, detection method is much simpler and faster because it does not require any labeling step in the experiment procedure. Second, significant color-transition from blue to red based upon external stimulus allows us the detection by naked eyes. Finally, it is also possible to perform quantitative analysis of the concentration of the chelating agent by measuring the colorimetric response. In this paper, five types of chelating agents were used, including EDTA, EGTA, NTA, DCTA and DTPA. Among them, EDTA and DCTA triggered especially strong color-transition. In conclusion, this study has led to a successful development of a color transition-based PDA sensor system for easy and rapid detection of chelating agents.