DOI QR코드

DOI QR Code

The Design and Test of the Stand-off Surface Chemical Contaminant Detection System based on Raman Spectroscopy

비접촉식 지표면 화학 오염 탐지용 라만 분광시스템 설계 및 성능확인

  • Koh, Young Jin (The 4th Research and Development Institute, Agency for Defense Development)
  • 고영진 (국방과학연구소 제4기술연구본부)
  • Received : 2019.02.25
  • Accepted : 2019.04.26
  • Published : 2019.06.05

Abstract

In order to detect toxic chemical spread on field ground, we developed stand-off Raman spectrometer system which employed a deep UV laser. In this paper, the design and specification of various components in the spectrometer system are described. Some results when the detection system was tested on the outdoor roads are shown, which may help researching stand-off chemical detectors based on Raman spectroscopy.

Keywords

GSGGBW_2019_v22n3_433_f0001.png 이미지

Fig. 1. Sensor module design

GSGGBW_2019_v22n3_433_f0002.png 이미지

Fig. 2. Beam shaping optics design

GSGGBW_2019_v22n3_433_f0003.png 이미지

Fig. 3. Telescope design

GSGGBW_2019_v22n3_433_f0004.png 이미지

Fig. 4. Result of the telescope efficiency simulation

GSGGBW_2019_v22n3_433_f0005.png 이미지

Fig. 5. Spectrograph module design

GSGGBW_2019_v22n3_433_f0006.png 이미지

Fig. 6. Fiber bundle design

GSGGBW_2019_v22n3_433_f0007.png 이미지

Fig. 7. Result of the indoor test

GSGGBW_2019_v22n3_433_f0008.png 이미지

Fig. 8. Field test setup

GSGGBW_2019_v22n3_433_f0009.png 이미지

Fig. 9. Result of the field test

GSGGBW_2019_v22n3_433_f0010.png 이미지

Fig. 10. Comparison of Raman spectrum according to test conditions (a) MES, (b) PTFE

Table 1. Specifications of KrF excimer laser

GSGGBW_2019_v22n3_433_t0001.png 이미지

Table 2. System requirements

GSGGBW_2019_v22n3_433_t0002.png 이미지

References

  1. National Consortiumfor the Study of Terrorismand Responses to Terrorism(START), Global Terrorism Database [Data File], 2017. http://www.start.umd.edu/gtd
  2. K. L. Gares, K. T. Hufziger, S. V. Bykov and S. A. Asher, "Review of Explosive Detection Methodologies and the Emergence of Standoff Deep UV Resonance Raman," J. Raman Spectrosc., Vol. 47, pp. 124-141, Jan. 2016. https://doi.org/10.1002/jrs.4868
  3. J. J. Brady, S. D. Roberson, M. E. Farrell, E. L. Holthoff, D. N. Stratis-Cullum and P. M. Pellegrino, "Laser-induced Breakdown Spectroscopy: A Review of Applied Explosive Detection," ARMY RESEARCH LAB ADELPHI MD SENSORS AND ECLECTRON DEVICES DIRECTORATE, Sep. 2013.
  4. S. K. Choi, Y. S. Jeong, J. H. Lee and Y. C. Ha, "Deep UV Raman Spectroscopic Study for the Standoff Detection of Chemical Warfare Agents from the Agent-Contaminated Ground Surface," Journal of the Korea Institute of Military Science and Technology, Vol. 18, pp. 612-620, Oct. 2015. https://doi.org/10.9766/KIMST.2015.18.5.612
  5. F. Yan and T. Vo-Dinh, "Surface-enhanced Raman Scattering Detection of Chemical and Biological Agents Using a Portable Raman Integrated Tunable Sensor," Sens. Actuators B. Vol. 121, pp. 61-66, Jan. 2007. https://doi.org/10.1016/j.snb.2006.09.032
  6. A. J. Sedlacek, M. D. Ray, N. S. Higdon and D. A. Richter, "Short-range Noncontact Detection of Surface Contamination Using Raman Lidar," in Proc. of SPIE, Vol. 4577, pp. 95-104, Feb. 2002.
  7. W. F. Hug, R. Bhartia, A. Tsapin, A. Lane, P. Conrad, K. Sijapati and R.D. Reid, "Water and Surface Contamination Monitoring Using Deep UV Laser," in Proc. of SPIE, Vol. 6378, pp. 63780S-1-63780S-13, July. 2006.
  8. M. D. Ray and A. J. Sedlacek, "Mini-Raman Lidar System for Stand-off, In Situ Interrogation of Surface Contaminants," in Proc. of SPIE, Vol. 3707, pp. 138-147, Nov. 2013.
  9. Y. C. Ha, J. H. Lee, Y. J. Koh, S. K. Lee and Y. K. Kim, "Raman Spectrometer for Detection of Chemicals on Road," Korean Journal of Optics and Photonics, Vol. 28, pp. 16-121, June. 2017. https://doi.org/10.3807/KJOP.2017.28.1.016
  10. Y. C. Ha, J. H. Lee, Y. J. Koh, S. K. Lee and Y. K. Kim, "Development of an Ultraviolet Raman Spectrometer for Standoff Detection of Chemicals," Current Optics and Photonics, Vol. 1, pp. 247-251, June. 2017. https://doi.org/10.3807/COPP.2017.1.3.247
  11. S. T. Christesen, J. P. Jones, J. M. Lochner and A. M. Hyre, "Ultraviolet Raman Spectral and Cross-Sections of the G-series Nerve Agents," Applied Spectroscopy, Vol. 62, pp. 1078-1083, Nov. 2008. https://doi.org/10.1366/000370208786049024
  12. S. L. Bartelt-Hunt, D. R. U. Knappe and M. A. Barlaz, "A Review of Chemical Warfare Agent Simulants for the Study of Environmental Behavior," Crit. Rev. Environ. Sci. Technol., Vol. 38, pp. 112-136, Jan. 2008 https://doi.org/10.1080/10643380701643650
  13. Y. J. Koh, J. H. Lee, Y. S. Jeong and J. O. Lee, "Measurement of Raman Scattering Signals for Toxic Chemicals Using Deep UV Laser", The 118th General Meeting of the Korean Chemical Society, PHYS.P-371, Oct. 2016.
  14. R. D. Massaro, Y. Dai and E. B. Barojas, "Energetics and Vibrational Analysis of Methyl Salicylate Isomers," J. Phys. Chem. A. Vol. 113, pp. 10385-10390, Aug. 2009. https://doi.org/10.1021/jp905887m
  15. Y. H. Lee and S. Farquharson, "Rapid Chemical Agent Identification by Surface-enhanced Raman Spectroscopy," in Proc. of SPIE, Vol. 4378, pp. 21-26, Feb. 2001.
  16. A. J. Sedlacek, M. D. Ray and M. Wu, "Application of UV Raman Scattering to Non-traditional Standoff Chemical Detection," Trends Appl. Spectrosc, Vol. 5, pp. 19-38, 2004.
  17. C. K. Manka, S. Nikitin, R. Lunsford, P. Kunapareddy and J. Grun, "Wavelength-dependent Amplitude of Teflon Raman Lines," J. Raman Spectrosc., Vol. 42, pp. 685-690, Apr. 2011. https://doi.org/10.1002/jrs.2752
  18. J. O. Lee and Y. J. Koh, "Deep UV Raman Spectra of Chemical Agent Simulant by using 248 nm Laser In Open Fields," The 121 th General Meeting of the Korean Chemical Society, ORGN.P-417, Apr. 2018.