• 제목/요약/키워드: Chemical/Mechanical degradation

검색결과 214건 처리시간 0.023초

PEMFC MEA 제조 방법에 따른 성능 및 내구성 (Performance and Durability of PEMFC MEAs Fabricated by Various Methods)

  • 정재현;송명현;정회범;나일채;이정훈;이호;박권필
    • Korean Chemical Engineering Research
    • /
    • 제52권5호
    • /
    • pp.558-563
    • /
    • 2014
  • 고분자 전해질 연료전지의 성능과 내구성에 미치는 막 전극 접합체(MEA) 제조방법의 영향에 대해 연구하기 위해 닥터 블레이드 방법, 스프레이 방법, 스크린 프린트 방법 그리고 스크린 프린트+스프레이 방법에 의해 MEA를 제조하였다. 제조된 MEA를 체결한 단위전지의 성능을 측정해 각 MEA의 초기 성능을 비교하였다. 10초간 0.6V 일정전압 유지 후 0.9 V에서 10초간 유지하는 전극 열화 가속 시험(AST)을 각 MEA 적용해 내구성을 시험하였다. 전극 열화 가속 시험 6,000 사이클 전 후 I-V 곡선, 임피던스, 순환 전압측정법(CV), 선형쓸음 전기량측정법(LSV), 투과전자현미경(TEM) 등을 측정하였다. 닥터 블레이드 방법에 의해 제조한 MEA의 초기 성능이 제일 높았고, 스크린 프린트+스프레이 방법에 의해 제조한 MEA가 제일 낮은 열화 속도를 보였다.

전해 도금을 이용한 기가급 소자용 구리배선 공정 (Cu Metallization for Giga Level Devices Using Electrodeposition)

  • 김수길;강민철;구효철;조성기;김재정;여종기
    • 전기화학회지
    • /
    • 제10권2호
    • /
    • pp.94-103
    • /
    • 2007
  • 반도체 소자의 고속화, 고집적화, 고신뢰성화에 대한 요구는 알루미늄 합금으로부터 구리로의 배선 물질의 변화를 유도하였다. 낮은 비저항과 높은 내열화성을 특징으로 하는 구리는 그 전기적, 재료적 특성이 알루미늄과 상이하여 배선 형성에 있어 새로운 주변 재료와 공법을 필요로 한다. 본 총설에서는 상감공정(damascene process)을 사용하는 다층 구리 배선 공정에 있어 핵심이 되는 구리 전해 도금(electrodeposition) 공정을 중심으로 확산 방지막(diffusion barrier) 및 도전층(seed layer), 바닥 차오름(bottom-up filling)을 위한 전해/무전해 도금용 유기 첨가제, 화학적 기계적 평탄화(chemical mechanical polishing) 및 표면 보호막(capping layer) 기술 등의 금속화 공정에 대한 개요와 개발 이슈를 소개하고 최근의 연구 결과를 통해 구리 배선 공정의 최신 연구 동향을 소개하였다.

리튬 이온 배터리 음극에서 비닐렌 카보네이트가 매개하는 고체 전해질 계면 형성 메커니즘 연구 (Understanding the Mechanism of Solid Electrolyte Interface Formation Mediated by Vinylene Carbonate on Lithium-Ion Battery Anodes)

  • 이진희;정지윤;하재윤;김용태;최진섭
    • 한국표면공학회지
    • /
    • 제57권2호
    • /
    • pp.115-124
    • /
    • 2024
  • In advancing Li-ion battery (LIB) technology, the solid electrolyte interface (SEI) layer is critical for enhancing battery longevity and performance. Formed during the charging process, the SEI layer is essential for controlling ion transport and maintaining electrode stability. This research provides a detailed analysis of how vinylene carbonate (VC) influences SEI layer formation. The integration of VC into the electrolyte markedly improved SEI properties. Moreover, correlation analysis revealed a connection between electrolyte decomposition and battery degradation, linked to the EMC esterification and dicarboxylate formation processes. VC facilitated the formation of a more uniform and chemically stable SEI layer enriched with poly(VC), thereby enhancing mechanical resilience and electrochemical stability. These findings deepen our understanding of the role of electrolyte additives in SEI formation, offering a promising strategy to improve the efficiency and lifespan of LIBs.

THE PERFORMANCE OF CLAY BARRIERS IN REPOSITORIES FOR HIGH-LEVEL RADIOACTIVE WASTE

  • Pusch, Roland
    • Nuclear Engineering and Technology
    • /
    • 제38권6호
    • /
    • pp.483-488
    • /
    • 2006
  • Highly radioactive waste is placed in metal canisters embedded in dense clay termed buffer. The radioactive decay is associated with heat production, which causes degradation of the buffer and thereby time-dependent loss of its waste-isolating potential. The buffer is prepared by compacting air-dry smectite clay powder and is initially not fully water saturated. The evolution of the buffer starts with slow wetting by uptake of water from the surrounding rock followed by a long period of exposure to heat, pressure from the rock and chemical reactants. It can be described by conceptual and theoretical models describing processes related to temperature (T), hydraulic (H), mechanical (M) and chemical performance (C). For temperatures below 90 C more than 75 % of the smectite will be preserved for 100 000 years but cementation may reduce the excellent performance of the buffer to a yet not known extention.

Poly(butylene succinate) ionomer (PBSi)의 생체적합성과 생분해에 관한 연구 (Biocompatibility and Biodegradation of Poly(butylene succinate) ionomer)

  • Han, Sang-Il;Kang, Sun-Woong;Kim, Byung-Soo;Seungsoon Im
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.187-188
    • /
    • 2003
  • In previous study, we examined poly(butylene succinate) ionomer (PBSi) and confirmed that PBSi showed acceptable mechanical and rheological properties to apply in various field, due to the physical cross-linkage formed by ion aggregation. Besides, the incorporation of ionic groups led to the change of surface properties such as the hydrophilicity and surface morphology, which could affect hydrolytic degradation. (omitted)

  • PDF

흡수에 따른 탄소섬유 강화수지의 파괴거동 (Fracture Behavior for Carbon Fiber Reinforced Plastic by Immersion)

  • 김옥균;남기우;안병현
    • 수산해양기술연구
    • /
    • 제32권4호
    • /
    • pp.402-410
    • /
    • 1996
  • Recently carbon fiber reinforced plastic(CFRP) has been used structural materials in corrosive environment such as for water, chemical tank and chemical pipes. However, mechanical properties of such materials may change when CFRP are exposed to corrosive environment for long periods of time. Therefore, it is important to understand the effect of moisture absorption on mechanical properties of the CFRP. In this study, degradation behavior of immersed carbon fiber/epoxy resin composite material was investigated using acoustic emission(AE) technique. Fracture toughness test are performed on the compact tension(CT) test specimens that are pilled by two types of laminates $[0^{\circ}_2$/$90^{\circ}_2]_3s$ and $[0^{\circ}_2$/$90^{\circ}_2]_6s$During the fracture toughness test, AE test was carried out to monitor the damage of CFRP by moisture absorption. In spite of the change of moisture absorption rate, the fracture toughness of CFRP was not change. As immersion time increased, AE event count numbers decreased in low amplitude range of AE for amplitude distribution histogram. The event in low amplitude range was known to be generated by debonding of matrix-fiber interface. Therefore, decrease of AE event count numbers in low amplitude range represents that debonding of matrix-fiber interface which was probably generated by moisture absorption.

  • PDF

Chemical, Mechanical, Thermal, and Colorimetric Features of the Thermally Treated Eucalyptus grandis Wood Planted in Brazil

  • SCHULZ, Henrique Romer;ACOSTA, Andrey Pereira;BARBOSA, Kelvin Techera;JUNIOR, Mario Antonio Pinto da Silva;GALLIO, Ezequiel;DELUCIS, Rafael de Avila;GATTO, Darci Alberto
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권3호
    • /
    • pp.226-233
    • /
    • 2021
  • This article aimed at thermally treating and charactering the Eucalyptus grandis wood under three different temperatures. For this, pristine eucalypt samples were treated by heating in a laboratory oven at 160 ℃, 200 ℃ and 240 ℃, always for 2 h. Treatment parameters (based on weight percentage loss and specific gravity), as well as mechanical (by hardness tests), chemical (by infrared spectroscopy), thermal (by thermogravimetry), and colorimetric (by CIELab method) features were evaluated. Compared to the pristine ones, the treated woods have there was a drop in apparent density at 12 % and consecutively greater thermal stability which is probably related to a previous partial degradation of some major amorphous components (namely cellulose, hemicellulose and lignin), as suggested by the treatment parameters and infrared spectra. Besides of that, the higher the temperature treatment, the higher the loss in surface hardness and the higher the colour darkening.

하니콤 샌드위치 구조물의 수리 시 반복 경화에 따른 강도 특성 평가 (Evaluation of Strength Characteristics of HoneyComb Sandwitch Structure Due to the Repeated Curing Cycle in Repair Process)

  • 손영준;이기현;김국진;한중원;김윤해
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.83-87
    • /
    • 2002
  • Aerospace industries are widely using honeycomb sandwich structures that it has high specific strength and stiffness, chemical material resistance and fatigue resistance. But, in repairing process of damaged areas, one of the problems is that delamination can be occurred in the sound areas during and/or after the exposure to the elevated curing temperature in case that the repair process is repeated. Therefore, this study was conducted Flatwise tensile, Drum peel and Long beam flexural strength tests to evaluate the degree of degradation of mechanical properties of the honeycomb sandwich structures by affecting thermal aging. As the results, the decrease of mechanical strength was observed at the specific specimen which is exposed over 50hrs at $127^{\circ}C$.

  • PDF

A computational setting of calcium leaching in concrete and its coupling with continuum damage mechanics

  • Nguyen, V.H.;Nedjar, B.;Torrenti, J.M.
    • Computers and Concrete
    • /
    • 제1권2호
    • /
    • pp.131-150
    • /
    • 2004
  • We present in this work a coupled phenomenological chemo-mechanical model that represents the degradation of concrete-like materials. The chemical behaviour is described by the nowadays well known simplified calcium leaching approach. And the mechanical damage behaviour is described by a continuum damage model which involves the gradient of the damage quantity. The coupled nonlinear problem at hand is addressed within the context of the finite element method. For the equation governing the calcium dissolution-diffusion part of the problem, special care is taken to treat the highly nonlinear calcium conductivity and solid calcium functions. The algorithmic design is based on a Newton-type iterative scheme where use is made of a recently proposed relaxed linearization procedure. And for the equation governing the damage part of the problem, an augmented Lagrangian formulation is used to take into account the damage irreversibility constraint. Finally, numerical simulations are compared with experimental results on cement paste.

Corrosion behavior of concrete produced with diatomite and zeolite exposed to chlorides

  • Gerengi, Husnu;Kocak, Yilmaz;Jazdzewska, Agata;Kurtay, Mine
    • Computers and Concrete
    • /
    • 제19권2호
    • /
    • pp.161-169
    • /
    • 2017
  • Chloride induced reinforcement corrosion is widely accepted to be the most frequent mechanism causing premature degradation of reinforced concrete structures. The electrochemical impedance of reinforcing steel in diatomite- and zeolite-containing concrete exposed to sodium chloride was assessed. Chemical, physical and mineralogical properties of three concrete samples (20% diatomite, 20% zeolite, and a reference containing neither) were correlated with corrosion investigations. The steel-reinforced samples were exposed to 3.5% NaCl solution for 500 days, and measured every 15 days via EIS method. Results indicated that porosity and capillary spaces increase the diffusion rate of water and electrolytes throughout the concrete, making it more susceptible to cracking. Reinforcement in the reference concrete was the most corroded compare to the zeolite and the diatomite samples.