DOI QR코드

DOI QR Code

리튬 이온 배터리 음극에서 비닐렌 카보네이트가 매개하는 고체 전해질 계면 형성 메커니즘 연구

Understanding the Mechanism of Solid Electrolyte Interface Formation Mediated by Vinylene Carbonate on Lithium-Ion Battery Anodes

  • 이진희 (인하대학교 화학.화학공학융합학과) ;
  • 정지윤 (인하대학교 화학.화학공학융합학과) ;
  • 하재윤 (인하대학교 화학.화학공학융합학과) ;
  • 김용태 (전남대학교 화공생명공학과) ;
  • 최진섭 (인하대학교 화학.화학공학융합학과)
  • Jinhee Lee (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Ji-Yoon Jeong (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Jaeyun Ha (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Yong-Tae Kim (Department of Chemical and Biomolecular Engineering, Chonnam National University) ;
  • Jinsub Choi (Department of Chemistry and Chemical Engineering, Inha University)
  • 투고 : 2024.04.20
  • 심사 : 2024.04.25
  • 발행 : 2024.04.30

초록

In advancing Li-ion battery (LIB) technology, the solid electrolyte interface (SEI) layer is critical for enhancing battery longevity and performance. Formed during the charging process, the SEI layer is essential for controlling ion transport and maintaining electrode stability. This research provides a detailed analysis of how vinylene carbonate (VC) influences SEI layer formation. The integration of VC into the electrolyte markedly improved SEI properties. Moreover, correlation analysis revealed a connection between electrolyte decomposition and battery degradation, linked to the EMC esterification and dicarboxylate formation processes. VC facilitated the formation of a more uniform and chemically stable SEI layer enriched with poly(VC), thereby enhancing mechanical resilience and electrochemical stability. These findings deepen our understanding of the role of electrolyte additives in SEI formation, offering a promising strategy to improve the efficiency and lifespan of LIBs.

키워드

참고문헌

  1. H.D. Matthews, N.P. Gillett, P.A. Stott, K. Zickfeld, The proportionality of global warming to cumulative carbon emissions, Nature, 459 (2009) 829-832.
  2. K.O. Yoro, M.O. Daramola, Chapter 1 - CO2 emission sources, greenhouse gases, and the global warming effect, in: M.R. Rahimpour, M. Farsi, M.A. Makarem (Eds.) Advances in Carbon Capture, Woodhead Publishing, 2020, 3-28.
  3. M.R. Anisur, M.H. Mahfuz, M.A. Kibria, R. Saidur, I.H.S.C. Metselaar, T.M.I. Mahlia, Curbing global warming with phase change materials for energy storage, Renewable and Sustainable Energy Reviews, 18 (2013) 23-30.
  4. M. Gutsch, J. Leker, Global warming potential of lithium-ion battery energy storage systems: A review, Journal of Energy Storage, 52 (2022) 105030.
  5. M.M. Thackeray, C. Wolverton, E.D. Isaacs, Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries, Energy & Environmental Science, 5 (2012) 7854-7863.
  6. Y. Wu, W. Wang, J. Ming, M. Li, L. Xie, X. He, J. Wang, S. Liang, Y. Wu, An exploration of new energy storage system: high energy density, high safety, and fast charging lithium ion battery, Advanced Functional Materials, 29 (2019) 1805978.
  7. F.A. Soto, A. Marzouk, F. El-Mellouhi, P.B. Balbuena, Understanding ionic diffusion through SEI components for lithium-ion and sodium-ion batteries: insights from first-principles calculations, Chemistry of Materials, 30 (2018) 3315-3322.
  8. S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon, 105 (2016) 52-76.
  9. U.S. Meda, L. Lal, S. M, P. Garg, Solid electrolyte interphase (SEI), a boon or a bane for lithium batteries: A review on the recent advances, Journal of Energy Storage, 47 (2022) 103564.
  10. H. Cheng, J.G. Shapter, Y. Li, G. Gao, Recent progress of advanced anode materials of lithium-ion batteries, Journal of Energy Chemistry, 57 (2021) 451-468.
  11. S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries, Journal of Power Sources, 257 (2014) 421-443.
  12. J. Kalhoff, G.G. Eshetu, D. Bresser, S. Passerini, Safer electrolytes for lithium-ion batteries: state of the art and perspectives, ChemSusChem, 8 (2015) 2154-2175.
  13. G. Xu, X. Shangguan, S. Dong, X. Zhou, G. Cui, Formulation of Blended-Lithium-Salt Electrolytes for Lithium Batteries, Angewandte Chemie International Edition, 59 (2020) 3400-3415.
  14. D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, U. Heider, On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries, Electrochimica Acta, 47 (2002) 1423-1439.
  15. L. Chen, K. Wang, X. Xie, J. Xie, Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries, Journal of Power Sources, 174 (2007) 538-543.
  16. L. Chen, K. Wang, X. Xie, J. Xie, Electrochemical and Solid-State Letters, 9 (2006) A512.
  17. A.L. Michan, B.S. Parimalam, M. Leskes, R.N. Kerber, T. Yoon, C.P. Grey, B.L. Lucht, Chem. Mater., 28 (2016) 8149-8159.
  18. Y. Wang, S. Nakamura, K. Tasaki, P.B. Balbuena, Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: how does vinylene carbonate play its role as an electrolyte additive?, Journal of the American Chemical Society, 124 (2002) 4408-4421.
  19. G. Seo, J. Ha, M. Kim, J. Park, J. Lee, E. Park, S. Bong, K. Lee, S.J. Kwon, S.P. Moon, J. Choi, J. Lee, Rapid determination of lithium-ion battery degradation: High C-rate LAM and calculated limiting LLI, Journal of Energy Chemistry, 67 (2022) 663-671.
  20. S.K. Heiskanen, J. Kim, B.L. Lucht, Generation and evolution of the solid electrolyte interphase of lithium-ion batteries, Joule, 3 (2019) 2322-2333.
  21. T. Yoon, C.C. Nguyen, D.M. Seo, B.L. Lucht, Capacity fading mechanisms of silicon nanoparticle negative electrodes for lithium ion batteries, Journal of The Electrochemical Society, 162 (2015) A2325.
  22. Q. Huang, M.J. Loveridge, R. Genieser, M.J. Lain, R. Bhagat, Electrochemical evaluation and phase-related impedance studies on silicon-few layer graphene (FLG) composite electrode systems, Scientific Reports, 8 (2018) 1386.
  23. K. Ogata, S. Jeon, D.S. Ko, I.S. Jung, J.H. Kim, K. Ito, Y. Kubo, K. Takei, S. Saito, Y.H. Cho, H. Park, J. Jang, H.G. Kim, J.H. Kim, Y.S. Kim, W. Choi, M. Koh, K. Uosaki, S.G. Doo, Y. Hwang, S. Han, Evolving affinity between Coulombic reversibility and hysteretic phase transformations in nano-structured silicon-based lithium-ion batteries, Nature Communications, 9 (2018) 479.
  24. X. Chen, X. Wang, D. Fang, A review on C1s XPS-spectra for some kinds of carbon materials, Fullerenes, Nanotubes and Carbon Nanostructures, 28 (2020) 1048-1058.
  25. S. Leroy, F. Blanchard, R. Dedryvere, H. Martinez, B. Carre, D. Lemordant, D. Gonbeau, Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study, Surface and Interface Analysis, 37 (2005) 773-781.
  26. C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Bjorefors, K. Edstrom, T. Gustafsson, Improved performance of the silicon anode for li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive, Chemistry of Materials, 27 (2015) 2591-2599.
  27. N.A. Nebogatikova, I.V. Antonova, V.Y. Prinz, I.I. Kurkina, V.I. Vdovin, G.N. Aleksandrov, V.B. Timofeev, S.A. Smagulova, E.R. Zakirov, V.G. Kesler, Fluorinated graphene dielectric films obtained from functionalized graphene suspension: preparation and properties, Physical Chemistry Chemical Physics, 17 (2015) 13257-13266.
  28. L. El Ouatani, R. Dedryvere, C. Siret, P. Biensan, D. Gonbeau, Effect of vinylene carbonate additive in li-ion batteries: comparison of LiCoO2 / C, LiFePO4 / C, and LiCoO2 /Li4Ti5O12 Systems, Journal of The Electrochemical Society, 156 (2009) A468.
  29. L. Martin, H. Martinez, M. Ulldemolins, B. Pecquenard, F. Le Cras, Evolution of the Si electrode/electrolyte interface in lithium batteries characterized by XPS and AFM techniques: The influence of vinylene carbonate additive, Solid State Ionics, 215 (2012) 36-44.
  30. G.D. Soraru, G. D'Andrea, A. Glisenti, XPS characterization of gel-derived silicon oxycarbide glasses, Materials Letters, 27 (1996) 1-5.
  31. J. Shin, T.H. Kim, Y. Lee, E. Cho, Key functional groups defining the formation of Si anode solid-electrolyte interphase towards high energy density Li-ion batteries, Energy Storage Materials, 25 (2020) 764-781.
  32. Y. Qian, P. Niehoff, M. Borner, M. Grutzke, X. Monnighoff, P. Behrends, S. Nowak, M. Winter, F.M. Schappacher, Influence of electrolyte additives on the cathode electrolyte interphase (CEI) formation on LiNi1/3Mn1/3Co1/3O2 in half cells with Li metal counter electrode, Journal of Power Sources, 329 (2016) 31-40.
  33. H. Yoshida, T. Fukunaga, T. Hazama, M. Terasaki, M. Mizutani, M. Yamachi, Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging, Journal of Power Sources, 68 (1997) 311-315.
  34. B. Strehle, S. Solchenbach, M. Metzger, K.U. Schwenke, H.A. Gasteiger, The effect of CO2 on alkyl carbonate trans esterification during formation of graphite electrodes in Li-ion batteries, Journal of The Electrochemical Society, 164 (2017) A2513.
  35. B. Ravdel, K.M. Abraham, R. Gitzendanner, J. DiCarlo, B. Lucht, C. Campion, Thermal stability of lithium-ion battery electrolytes, Journal of Power Sources, 119-121 (2003) 805-810.