• Title/Summary/Keyword: Checkpoint-Inhibition

Search Result 25, Processing Time 0.033 seconds

Immunotherapy for Non-Small Cell Lung Cancer

  • Yoon, Sung Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.77 no.3
    • /
    • pp.111-115
    • /
    • 2014
  • Lung cancer is the leading cause of cancer-related mortality worldwide, and more than 80% of cases are of non-small cell lung cancer. Although chemotherapy and molecularly targeted therapy may provide some benefit, there is a need for newer therapies for the treatment of patients with advanced NSCLC. Immunotherapy aims to augment the recognition of cancer as foreign, to stimulate immune responsiveness, and to relieve the inhibition of the immune response that allows tolerance to tumor survival and growth. Two immunotherapeutic approaches showing promise in NSCLC are immune checkpoint inhibition and cancer vaccination. Although currently immunotherapy does not have an established role in the treatment of NSCLC, these patients should be enrolled in formal clinical trials.

Pleiotropic Effects of Caffeine Leading to Chromosome Instability and Cytotoxicity in Eukaryotic Microorganisms

  • Chung, Woo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.171-180
    • /
    • 2021
  • Caffeine, a methylxanthine analog of purine bases, is a compound that is largely consumed in beverages and medications for psychoactive and diuretic effects and plays many beneficial roles in neuronal stimulation and enhancement of anti-tumor immune responses by blocking adenosine receptors in higher organisms. In single-cell eukaryotes, however, caffeine somehow impairs cellular fitness by compromising cell wall integrity, inhibiting target of rapamycin (TOR) signaling and growth, and overriding cell cycle arrest caused by DNA damage. Among its multiple inhibitory targets, caffeine specifically interacts with phosphatidylinositol 3-kinase (PI3K)-related kinases causing radiosensitization and cytotoxicity via specialized intermediate molecules. Caffeine potentiates the lethality of cells in conjunction with several other stressors such as oxidants, irradiation, and various toxic compounds through largely unknown mechanisms. In this review, recent findings on caffeine effects and cellular detoxification schemes are highlighted and discussed with an emphasis on the inhibitory interactions between caffeine and its multiple targets in eukaryotic microorganisms such as budding and fission yeasts.

Characteristics of Cancer Stem Cells and Immune Checkpoint Inhibition (암줄기세포의 특성 및 면역관문억제)

  • Choi, Sang-Hun;Kim, Hyunggee
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.499-508
    • /
    • 2019
  • Cancer stem cells (CSCs), which are primarily responsible for metastasis and recurrence, have self-renewal, differentiation, therapeutic resistance, and tumor formation abilities. Numerous studies have demonstrated the signaling pathways essential for the acquisition and maintenance of CSC characteristics, such as WNT/${\beta}$-catenin, Hedgehog, Notch, B lymphoma Mo-MLV insertion region 1 homolog (BMI1), Bone morphogenetic protein (BMP), and TGF-${\beta}$ signals. However, few therapeutic strategies have been developed that can selectively eliminate CSCs. Recently, neutralizing antibodies against Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) and Programmed cell death protein 1 (PD-1)/Programmed death-ligand 1 (PD-L1), immune checkpoint inhibitors (ICIs), have shown promising outcomes in clinical trials of melanoma, lung cancer, and pancreatic cancer, as well as in hematologic malignancies. ICIs are considered to outperform conventional anticancer drugs by maintaining long-lasting anti-cancer effects, with less severe side effects. Several studies reported that ICIs successfully blocked CSC properties in head and neck squamous carcinomas, melanomas, and breast cancer. Together, these findings suggest that novel and effective anticancer therapeutic modalities using ICIs for selective elimination of CSCs may be developed in the near future. In this review, we highlight the origin and characteristics of CSCs, together with critical signaling pathways. We also describe progress in ICI-mediated anticancer treatment to date and present perspectives on the development of CSC-targeting ICIs.

Tumour Suppressive Effects of WEE1 Gene Silencing in Breast Cancer Cells

  • Ghiasi, Naghmeh;Habibagahi, Mojtaba;Rosli, Rozita;Ghaderi, Abbas;Yusoff, Khatijah;Hosseini, Ahmad;Abdullah, Syahrilnizam;Jaberipour, Mansooreh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6605-6611
    • /
    • 2013
  • Background: WEE1 is a G2/M checkpoint regulator protein. Various studies have indicated that WEE1 could be a good target for cancer therapy. The main aim of this study was to asssess the tumor suppressive potential of WEE1 silencing in two different breast cancer cell lines, MCF7 which carries the wild-type p53 and MDA-MB468 which contains a mutant type. Materials and Methods: After WEE1 knockdown with specific shRNAs downstream effects on cell viability and cell cycle progression were determined using MTT and flow cytometry analyses, respectively. Real-time PCR and Western blotting were conducted to assess the effect of WEE1 inhibition on the expression of apoptotic (p53) and anti-apoptotic (Bcl2) factors and also a growth marker (VEGF). Results: The results showed that WEE1 inhibition could cause a significant decrease in the viability of both MCF7 and MDA-MB-468 breast cancer cell lines by more than 50%. Interestingly, DNA content assays showed a significant increase in apoptotic cells following WEE1 silencing. WEE1 inhibition also induced upregulation of the apoptotic marker, p53, in breast cancer cells. A significant decrease in the expression of VEGF and Bcl-2 was observed following WEE1 inhibition in both cell lines. Conclusions: In concordance with previous studies, our data showed that WEE1 inhibition could induce G2 arrest abrogation and consequent cell death in breast cancer cells. Moreover, in this study, the observed interactions between the pro- and anti-apoptotic proteins and decrease in the angiogenesis marker expression confirm the susceptibility to apoptosis and validate the tumor suppressive effect of WEE1 inhibition in breast cancer cells. Interestingly, the levels of the sensitivity to WEE1 silencing in breast cancer cells, MCF7 and MDA-MB468, seem to be in concordance with the level of p53 expression.

Induction of G2/M Cell Cycle Arrest by Glutamine Deprivation in Human Prostate Carcinoma PC3 Cells (글루타민 결핍에 의한 PC3 인체 전립선 암세포의 G2/M 세포주기 억제 유발)

  • Shin, Dong Yeok;Choi, Sung Hyun;Park, Dong Il;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.832-837
    • /
    • 2013
  • In this study, it was investigated the possible mechanisms by which glutamine deprivation exerts its anti-proliferative action in cultured human prostate carcinoma PC3 cells. Glutamine deprivation resulted in inhibition of growth and G2/M arrest of the cell cycle in a time-dependent manner without apoptosis induction, as determined by MTT assay, DAPI staining and flow cytometry analyses. The induction of G2/M arrest by glutamine deprivation was associated with the inhibition of expression of Cdc2, cyclin A and cyclin B1, and up-regulation of the expression of cyclin-dependent kinase (Cdk) inhibitor p21(WAF1/CIP1) in both transcriptional and translational levels. Moreover, glutamine deprivation increased the phosphorylation of checkpoint kinase (Chk)1 and Chk2; however, the levels of Cdc25C phosphorylation were decreased in response to glutamine deprivation in a time-dependent manner. Our data provide a first biochemical evidence that glutamine deprivation suppresses cell viability through G2/M phase arrest without induction of apoptosis in PC3 cells.

Involvement of a Gr2a-Expressing Drosophila Pharyngeal Gustatory Receptor Neuron in Regulation of Aversion to High-Salt Foods

  • Kim, Haein;Jeong, Yong Taek;Choi, Min Sung;Choi, Jaekyun;Moon, Seok Jun;Kwon, Jae Young
    • Molecules and Cells
    • /
    • v.40 no.5
    • /
    • pp.331-338
    • /
    • 2017
  • Regulation of feeding is essential for animal survival. The pharyngeal sense organs can act as a second checkpoint of food quality, due to their position between external taste organs such as the labellum which initially assess food quality, and the digestive tract. Growing evidence provides support that the pharyngeal sensory neurons regulate feeding, but much is still unknown. We found that a pair of gustatory receptor neurons in the LSO, a Drosophila adult pharyngeal organ which expresses four gustatory receptors, is involved in feeding inhibition in response to high concentrations of sodium ions. RNAi experiments and mutant analysis showed that the gustatory receptor Gr2a is necessary for this process. This feeding preference determined by whether a food source is perceived as appetizing or not is influenced by nutritional conditions, such that when the animal is hungry, the need for energy dominates over how appealing the food source is. Our results provide experimental evidence that factors involved in feeding function in a context-dependent manner.

What's New in Molecular Targeted Therapies for Thyroid Cancer? (갑상선암 표적치료의 최신지견)

  • Min, Seonyoung;Kang, Hyunseok
    • Korean Journal of Head & Neck Oncology
    • /
    • v.37 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • Thyroid cancer refers to various cancers arising from thyroid gland. Differentiated thyroid cancers (DTCs) include papillary, follicular, and Hurthle cell carcinomas and represent cancers retain normal thyroid functions such as iodine uptake. Radioactive iodine (RAI) is generally used for upfront treatment of metastatic DTCs, but RAI refractory DTCs remain to be clinical challenges. Sorafenib and lenvatinib were approved for the treatment of RAI refractory DTCs and more recently, genomics-based targeted therapies have been developed for NTRK and RET gene fusion-positive DTCs. Poorly differentiated and anaplastic thyroid cancers (ATCs) are extremely challenging diseases with aggressive courses. BRAF/MEK inhibition has been proven to be highly effective in BRAF V600E mutation-positive ATCs and immune checkpoint inhibitors have shown promising activities. Medullary thyroid cancers, which arise from parafollicular cells of thyroid, represent a unique subset of thyroid cancer and mainly driven by RET mutation. In addition to vandetanib and cabozantinib, highly specific RET inhibitors such as selpercatinib and pralsetinib have demonstrated impressive activity and are in clinical use.

Inhibition Effects of Persicaria amphibia (L.) Delarbre on Oxidative DNA Damage via ATM/Chk2/p53 pathway

  • So-Yeon Han;Hye-Jeong Park;Jeong-Yong Park;Seo-Hyun Yun;Mi-Ji Noh;Soo-Yeon Kim;Tae-Won Jang;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.52-52
    • /
    • 2021
  • Persicaria amphibia as an England native plant, is a rhizomatous perennial, one of the rather amphibious plants. Its aquatic form contains water-soluble sugars, starch, and protein. P. amphibia have up to 18% tannins in stems and rhizomes. Previous studies have confirmed the anti-inflammatory activity of live bacteria roots, but no studies on bioactivity are known. DNA damage responses (DDRs) pathways are considered a crucial factor affecting the alleviation of cellular damage. The ataxia-telangiectasia mutated and Rad3 related (ATM) and checkpoint kinase 2 (Chk2) pathways are the main pathways of DNA damage response. Also, p53 is a key integrator of cellular response to oxidative DNA damage, contributing repair, or leading transcription including apoptosis. In the present study, we conducted an investigation into the inhibitory effects of P. amphibia on oxidative DNA damage for confirming potential to complementary medicine and therapies. In conclusion, P. amphibia can provide protective effects against double-stranded DNA break (DSB) caused by oxidative DNA damage.

  • PDF

Cell Cycle Arrest Effects by Artemisia annua Linné in Hep3B Liver Cancer Cell (Hep3B 간암세포에서 개똥쑥 추출물에 의한 Cell Cycle Arrest 효과)

  • Kim, Eun Ji;Kim, Guen Tae;Kim, Bo Min;Lim, Eun Gyeong;Kim, Sang Yong;Ha, Sung Ho;Kim, Young Min;Yoo, Je-Geun
    • KSBB Journal
    • /
    • v.30 no.4
    • /
    • pp.175-181
    • /
    • 2015
  • Cells proliferate via repeating process that growth and division. This process is G1, S, G2 and M four phases consists. Monitoring the progression of the cell cycle is a specific step that to be a continuous process is repeated to adjust the start of the next step. At this time, this process is called a Checkpoint. Currently, there are three known checkpoints that G1-S phase, G2-M phase, and the M phase. In this study, we confirmed that cell cycle arrest effects by ethanol extracts of Artemisia annua Linne (AAE) in Hep3B liver cancer cells. AAE was regulated proteins which involved in cell cycle such as pAkt, pMDM2, p53, p21, pCDK2 (T14/Y15). AAE induced cell cycle arrest in G1 checkpoint through phosphorylation of CDK2. Akt and p53 upstream is inhibited by AAE and p53 activated by non-activated pMDM2, p53 inhibitor. Thereby, activated p53 is transcript to p21 and activated p21 protein is combined with Cyclin E-pCDK2 complex. Therefore, we confirmed that AAE-induced cell cycle arrest was occurred by p21-Cyclin E-pCDK2 complex by inhibition of pAkt signal. Because of this cell cycle can't pass to S phase from G1 phase.

Anticancer Activity of Novel Daphnane Diterpenoids from Daphne genkwa through Cell-Cycle Arrest and Suppression of Akt/STAT/Src Signalings in Human Lung Cancer Cells

  • Jo, Si-Kyoung;Hong, Ji-Young;Park, Hyen Joo;Lee, Sang Kook
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.513-519
    • /
    • 2012
  • Although the immense efforts have been made for cancer prevention, early diagnosis, and treatment, cancer morbidity and mortality has not been decreased during last forty years. Especially, lung cancer is top-ranked in cancer-associated human death. Therefore, effective strategy is strongly required for the management of lung cancer. In the present study, we found that novel daphnane diterpenoids, yuanhualine (YL), yuanhuahine (YH) and yuanhuagine (YG) isolated from the flower of Daphne genkwa (Thymelaeaceae), exhibited potent anti-proliferative activities against human lung A549 cells with the $IC_{50}$ values of 7.0, 15.2 and 24.7 nM, respectively. Flow cytometric analysis revealed that the daphnane diterpenoids induced cell-cycle arrest in the G0/G1 as well as G2/M phase in A549 cells. The cell-cycle arrests were well correlated with the expression of checkpoint proteins including the up-regulation of cyclin-dependent kinase inhibitor p21 and p53 and down-regulation of cyclin A, cyclin B1, cyclin E, cyclin dependent kinase 4, cdc2, phosphorylation of Rb and cMyc expression. In the analysis of signal transduction molecules, the daphnane diterpenoids suppressed the activation of Akt, STAT3 and Src in human lung cancer cells. The daphnane diterpenoids also exerted the potent anti-proliferative activity against anticancer-drug resistant cancer cells including gemcitabine-resistant A549, gefitinib-, erlotinib-resistant H292 cells. Synergistic effects in the growth inhibition were also observed when yuanhualine was combined with gemcitabine, gefitinib or erlotinib in A549 cells. Taken together, these findings suggest that the novel daphnane diterpenoids might provide lead candidates for the development of therapeutic agents for human lung cancers.