Browse > Article
http://dx.doi.org/10.4014/jmb.2011.11042

Pleiotropic Effects of Caffeine Leading to Chromosome Instability and Cytotoxicity in Eukaryotic Microorganisms  

Chung, Woo-Hyun (College of Pharmacy, Duksung Women's University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.2, 2021 , pp. 171-180 More about this Journal
Abstract
Caffeine, a methylxanthine analog of purine bases, is a compound that is largely consumed in beverages and medications for psychoactive and diuretic effects and plays many beneficial roles in neuronal stimulation and enhancement of anti-tumor immune responses by blocking adenosine receptors in higher organisms. In single-cell eukaryotes, however, caffeine somehow impairs cellular fitness by compromising cell wall integrity, inhibiting target of rapamycin (TOR) signaling and growth, and overriding cell cycle arrest caused by DNA damage. Among its multiple inhibitory targets, caffeine specifically interacts with phosphatidylinositol 3-kinase (PI3K)-related kinases causing radiosensitization and cytotoxicity via specialized intermediate molecules. Caffeine potentiates the lethality of cells in conjunction with several other stressors such as oxidants, irradiation, and various toxic compounds through largely unknown mechanisms. In this review, recent findings on caffeine effects and cellular detoxification schemes are highlighted and discussed with an emphasis on the inhibitory interactions between caffeine and its multiple targets in eukaryotic microorganisms such as budding and fission yeasts.
Keywords
Caffeine; growth inhibition; radiosensitization; DNA damage checkpoint; unicellular eukaryotes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lopez-Cruz L, Salamone JD, Correa M. 2018. Caffeine and selective adenosine receptor antagonists as new therapeutic tools for the motivational symptoms of depression. Front. Pharmacol. 9: 526.   DOI
2 Malinauskas BM, Aeby VG, Overton RF, Carpenter-Aeby T, Barber-Heidal K. 2007. A survey of energy drink consumption patterns among college students. Nutr. J. 6: 35.   DOI
3 Smith AP. 2013. Caffeine, extraversion and working memory. J. Psychopharmacol. 27: 71-76.   DOI
4 Zhou H, Luo Y, Huang S. 2010. Updates of mTOR inhibitors. Anticancer Agents Med. Chem. 10: 571-581.   DOI
5 Combettes L, Berthon B, Claret M. 1994. Caffeine inhibits cytosolic calcium oscillations induced by noradrenaline and vasopressin in rat hepatocytes. Biochem. J. 301: 737-744.   DOI
6 Ferguson LR, Philpott M. 2008. Nutrition and mutagenesis. Annu. Rev. Nutr. 28: 313-329.   DOI
7 Tolmach LJ, Jones RW, Busse PM. 1977. The action of caffeine on x-irradiated Hela cells. I. Delayed inhibition of DNA synthesis. Radiat. Res. 71: 653-665.   DOI
8 Busse PM, Bose SK, Jones RW, Tolmach LJ. 1978. The action of caffeine on X-irradiated HeLa cells III. Enhancement of X-ray-induced killing during G2 arrest. Radiat. Res. 76: 292-307.   DOI
9 Porta M, Vioque J, Ayude D, Alguacil J, Jariod M, Ruiz L, et al. 2003. Coffee drinking: the rationale for treating it as a potential effect modifier of carcinogenic exposures. Eur. J. Epidemiol. 18: 289-298.   DOI
10 Lu YP, Lou YR, Xie JG, Peng QY, Liao J, Yang CS, et al. 2002. Topical applications of caffeine or (-)-epigallocatechin gallate (EGCG) inhibit carcinogenesis and selectively increase apoptosis in UVB-induced skin tumors in mice. Proc. Natl. Acad. Sci. USA99: 12455-12460.   DOI
11 McMahon LP, Yue W, Santen RJ, Lawrence JC Jr. 2005. Farnesylthiosalicylic acid inhibits mammalian target of rapamycin (mTOR) activity both in cells and in vitro by promoting dissociation of the mTOR-raptor complex. Mol. Endocrinol. 19: 175-183.   DOI
12 Wanke V, Cameroni E, Uotila A, Piccolis M, Urban J, Loewith R, et al. 2008. Caffeine extends yeast lifespan by targeting TORC1. Mol. Microbiol. 69: 277-285.   DOI
13 Wullschleger S, Loewith R, Hall MN. 2006. TOR Signaling in growth and mtabolism. Cell 124: 471-484.   DOI
14 Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, et al. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res. 59: 4375-4382.
15 Block WD, Merkle D, Meek K, Lees-Miller SP. 2004. Selective inhibition of the DNA-dependent protein kinase (DNA-PK) by the radiosensitizing agent caffeine. Nucleic Acids Res. 32: 1967-1972.   DOI
16 Sage JM, Cura AJ, Lloyd KP, Carruthers A. 2015. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site. Am. J. Physiol. Cell Physiol. 308: C827-834.   DOI
17 Carruthers A, Helgerson AL. 1989. The human erythrocyte sugar transporter is also a nucleotide binding protein. Biochemistry 28: 8337-8346.   DOI
18 Courchesne WE, Ozturk S. 2003. Amiodarone induces a caffeine-inhibited, MID1-depedent rise in free cytoplasmic calcium in Saccharomyces cerevisiae. Mol. Microbiol. 47: 223-234.   DOI
19 Islam MS, Larsson O, Nilsson T, Berggren PO. 1995. Effects of caffeine on cytoplasmic free Ca2+ concentration in pancreatic beta-cells are mediated by interaction with ATP-sensitive K+ channels and L-type voltage-gated Ca2+ channels but not the ryanodine receptor. Biochem. J. 306: 679-686.   DOI
20 Kane CM, Linn S. 1981. Purification and characterization of an apurinic/apyrimidinic endonuclease from HeLa cells. J. Biol. Chem. 256: 3405-3414.   DOI
21 Lehmann AR, Kirk-Bell S, Arlett CF, Harcourt SA, de Weerd-Kastelein EA, Keijzer W, Hall-Smith P. 1977. Repair of ultraviolet light damage in a variety of human fibroblast cell strains. Cancer Res. 37: 904-910.
22 Yefremova GI, Filippova LM. 1974. Effect of caffeine on crossing-over in Drosophila melanogaster. Mutat. Res. 23: 347-352.   DOI
23 Kaufmann WK, Heffernan TP, Beaulieu LM, Doherty S, Frank AR, Zhou Y, et al. 2003. Caffeine and human DNA metabolism: the magic and the mystery. Mutat. Res. 532: 85-102.   DOI
24 Grigg GW. 1972. Effects of coumarin, pyronin Y, 6,9-dimethyl 2-methylthiopurine and caffeine on excision repair and recombination repair in Escherichia coli. J. Gen. Microbiol. 70: 221-230.   DOI
25 Loprieno N, Barale R, Baroncelli S. 1974. Genetic effects of caffeine. Mutat. Res. 26: 83-87.   DOI
26 Tsabar M, Eapen VV, Mason JM, Memisoglu G, Waterman DP, Long MJ, et al. 2015. Caffeine impairs resection during DNA break repair by reducing the levels of nucleases Sae2 and Dna2. Nucleic Acids Res. 43: 6889-6901.   DOI
27 Winter G, Hazan R, Bakalinsky AT, Abeliovich H. 2008. Caffeine induces macroautophagy and confers a cytocidal effect on food spoilage yeast in combination with benzoic acid. Autophagy 4: 28-36.   DOI
28 Robert T, Vanoli F, Chiolo I, Shubassi G, Bernstein KA, Rothstein R, et al. 2011. HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 471: 74-79.   DOI
29 Saiki S, Sasazawa Y, Imamichi Y, Kawajiri S, Fujimaki T, Tanida I, et al. 2011. Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition. Autophagy 7: 176-187.   DOI
30 Nomura M, Ichimatsu D, Moritani S, Koyama I, Dong Z, Yokogawa K, et al. 2005. Inhibition of epidermal growth factor-induced cell transformation and akt activation by caffeine. Mol. Carcinog. 44: 67-76.   DOI
31 Han W, Ming M, He YY. 2011. Caffeine promotes ultraviolet B-induced apoptosis in human keratinocytes without complete DNA repair. J. Biol. Chem. 286: 22825-22832.   DOI
32 Venkata Charan Tej GN, Neogi K, Verma SS, Chandra Gupta S, Nayak PK. 2019. Caffeine-enhanced anti-tumor immune response through decreased expression of PD1 on infiltrated cytotoxic T lymphocytes. Eur. J. Pharmacol. 859: 172538.   DOI
33 Shafiei F, Salari-Moghaddam A, Milajerdi A, Larijani B, Esmaillzadeh A. 2019. Coffee and caffeine intake and risk of ovarian cancer: a systematic review and meta-analysis. Int. J. Gynecol. Cancer 29: 579-584.   DOI
34 Ding M, Bhupathiraju SN, Chen M, van Dam RM, Hu FB. 2014. Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: a systematic review and a dose-response meta-analysis. Diabetes Care 37: 569-586.   DOI
35 Sandlie I, Lossius I, Sjastad K, Kleppe K. 1983. Mechanism of caffeine-induced inhibition of DNA synthesis in Escherichia coli. FEBS Lett. 151: 237-242.   DOI
36 Micek A, Godos J, Lafranconi A, Marranzano M, Pajak A. 2018. Caffeinated and decaffeinated coffee consumption and melanoma risk: a dose-response meta-analysis of prospective cohort studies. Int. J. Food. Sci. Nutr. 69: 417-426.   DOI
37 Zhao LG, Li ZY, Feng GS, Ji XW, Tan YT, Li HL, et al. 2020. Coffee drinking and cancer risk: an umbrella review of meta-analyses of observational studies. BMC Cancer 20: 101.   DOI
38 Sandlie I, Solberg K, Kleppe K. 1980. The effect of caffeine on cell growth and metabolism of thymidine in Escherichia coli. Mutat. Res. 73: 29-41.   DOI
39 Qi Z, Xiong L. 2013. Characterization of a purine permease family gene OsPUP7 involved in growth and development control in rice. J. Integr. Plant. Biol. 55: 1119-1135.   DOI
40 Calvo IA, Gabrielli N, Iglesias-Baena I, Garcia-Santamarina S, Hoe KL, Kim DU, et al. Genome-wide screen of genes required for caffeine tolerance in fission yeast. PLoS One 4: e6619.   DOI
41 Selby CP, Sancar A. 1990. Molecular mechanisms of DNA repair inhibition by caffeine. Proc. Natl. Acad. Sci. USA 87: 3522-3525.   DOI
42 Schlegel R, Pardee AB. 1986. Caffeine-induced uncoupling of mitosis from the completion of DNA replication in mammalian cells. Science 232: 1264-1266.   DOI
43 Downes CS, Musk SR, Watson JV, Johnson RT. 1990. Caffeine overcomes a restriction point associated with DNA replication, but does not accelerate mitosis. J. Cell Biol. 110: 1855-1859.   DOI
44 Moser BA, Brondello JM, Baber-Furnari B, Russell P. 2000. Mechanism of caffeine-induced checkpoint override in fission yeast. Mol. Cell. Biol. 20: 4288-4294.   DOI
45 Rowley R, Zorch M, Leeper DB. 1984. Effect of caffeine on radiation-induced mitotic delay: Delayed expression of G2 arrest. Radiat. Res. 97: 178-185.   DOI
46 Kirillova, TV, Rozanov, Iu M, Seregina, TB, Spivak, IM, 1989. The Effect of caffeine on the duration of the mitotic phase cycle in CHO-K1 Chinese hamster cells, irradiated with X-rays. Tsitologiia 31: 476-483.
47 Jung T, Streffer C. 1992. Effects of caffeine on protein phosphorylation and cell cycle progression in X-irradiated two-cell mouse embryos. Int. J. Radiat. Biol. 62: 161-168.   DOI
48 Zelensky AN, Sanchez H, Ristic D, Vidic I, van Rossum-Fikkert SE, Essers J, et al. 2013. Caffeine suppresses homologous recombination through interference with RAD51-mediated joint molecule formation. Nucleic Acids Res. 41: 6475-6489.   DOI
49 Tsabar M, Mason JM, Chan YL, Bishop DK, Haber JE. 2015. Caffeine inhibits gene conversion by displacing Rad51 from ssDNA. Nucleic Acids Res. 43: 6902-6918.   DOI
50 Powell SN, DeFrank JS, Connell P, Eogan M, Preffer F, Dombkowski D, et a1. 1995. Differential sensitivity of p53(-) and p53(+) cells to caffeine-induced radiosensitization and override of G2 delay. Cancer Res. 55: 1643-1648.
51 Choi EH, Yoon S, Park KS, Kim KP. 2017. The homologous recombination machinery orchestrates post-replication DNA repair during self-renewal of mouse embryonic stem cells. Sci. Rep. 7: 11610.   DOI
52 Kimler BF, Leeper DB, Snyder MH, Rowley R, Schneiderman MH. 1982. Modification of radiation-induced division delay by caffeine analogues and dibutyryl cyclic AMP. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 41: 47-58.   DOI
53 Wang H, Boecker W, Wang H, Wang X, Guan J, Thompson LH, et al. 2004. Caffeine inhibits homology-directed repair of I-SceI-induced DNA double-strand breaks. Oncogene 23: 824-834.   DOI
54 Tsujimoto Y, Shimizu Y, Otake K, Nakamura T, Okada R, Miyazaki T, et al. 2015. Multidrug resistance transporters Snq2p and Pdr5p mediate caffeine efflux in Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 79: 1103-1110.   DOI
55 Prasad R, Goffeau A. 2012. Yeast ATP-binding cassette transporters conferring multidrug resistance. Annu. Rev. Microbiol. 66: 39-63.   DOI
56 Hood-DeGrenier JK. 2011. Identification of phosphatase 2A-like Sit4-mediated signalling and ubiquitin-dependent protein sorting as modulators of caffeine sensitivity in S. cerevisiae. Yeast 28: 189-204.   DOI
57 Kot M, Daniel WA. 2008. Caffeine as a marker substrate for testing cytochrome P450 activity in human and rat. Pharmacol. Rep. 60: 789-797.
58 Al-Janabi AAHS. 2011. Potential activity of the purine compounds caffeine and aminophylline on bacteria. J. Glob. Infect. Dis. 3: 133-137.   DOI
59 Daglia M, Cuzzoni MT, Dacarro C. 1994. Antibacterial activity of coffees: Relationship between biological activity and chemical markers. J. Agric. Food Chem. 42: 2273-2277.   DOI
60 Almeida AAP, Farah A, Silva DAM, Nunan EA, Gloria MBA. 2006. Antibacterial activity of coffee extracts and selected coffee chemical compounds against enterobacteria. J. Agric. Food. Chem. 54: 8738-8743.   DOI
61 Sledz W, Los E, Paczek A, Rischka J, Motyka A, Zoledowska S, et al. 2015. Antibacterial activity of caffeine against plant pathogenic bacteria. Acta Biochim. Pol. 62: 605-612.   DOI
62 Saiardi A, Resnick AC, Snowman AM, Wendland B, Snyder SH. 2005. Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases. Proc. Natl. Acad. Sci. USA 102: 1911-1914.   DOI
63 Dash SS, Gummadi, S. 2008. Inhibitory effect of caffeine on growth of various bacterial strains. Res. J. Microbiol. 3: 457-465.   DOI
64 Ruta LL, Farcasanu IC. 2020. Saccharomyces cerevisiae and caffeine implications on the eukaryotic cell. Nutrients 12: 2440.   DOI
65 Dubois E, Scherens B, Vierendeels F, Ho MM, Messenguy F, Shears SB. 2002. In Saccharomyces cerevisiae, the inositol polyphosphate kinase activity of Kcs1p is required for resistance to salt stress, cell wall integrity, and vacuolar morphogenesis. J. Biol. Chem. 277: 23755-23763.   DOI
66 Bode AM, Dong Z. 2007. The enigmatic effects of caffeine in cell cycle and cancer. Cancer Lett. 247: 26-39.   DOI
67 Beavo JA, Rogers NL, Crofford OB, Hardman JG, Sutherland EW, Newman EV. 1970. Effects of xanthine derivatives on lipolysis and on adenosine 3',5'-monophosphate phosphodiesterase activity. Mol. Pharmacol. 6: 597-603.
68 Blasina A, Price BD, Turenne GA, McGowan CH. 1999. Caffeine inhibits the checkpoint kinase ATM. Curr. Biol. 9: 1135-1138.   DOI
69 Yao SL, Akhtar AJ, McKenna KA, Bedi GC, Sidransky D, Mabry M, et al. 1996. Selective radiosensitization of p53-deficient cells by caffeine-mediated activation of p34cdc2 kinase. Nat. Med. 2: 1140-1143.   DOI
70 Hartwell LH, Kastan MB. 1994. Cell cycle control and cancer. Science 266: 1821-1828.   DOI
71 Sarkaria JN, Tibbetts RS, Busby EC, Kennedy AP, Hill DE, Abraham RT. 1998. Inhibition of phosphoinositide 3-kinase related kinases by the radiosensitizing agent wortmannin. Cancer Res. 58: 4375-4382.
72 Hall-Jackson CA, Cross DA, Morrice N, Smythe C. 1999. ATR is a caffeine-sensitive, DNA-activated protein kinase with a substrate specificity distinct from DNA-PK. Oncogene 18: 6707-6713.   DOI
73 Taylor R Jr, Chen PH, Chou CC, Patel J, Jin SV. 2012. KCS1 deletion in Saccharomyces cerevisiae leads to a defect in translocation of autophagic proteins and reduces autophagosome formation. Autophagy 8: 1300-1311.   DOI
74 Worley J, Luo X, Capaldi AP. 2013. Inositol pyrophosphates regulate cell growth and the environmental stress response by activating the HDAC Rpd3L. Cell Rep. 3: 1476-1482.   DOI
75 Shears SB. 2018. Intimate connections: Inositol pyrophosphates at the interface of metabolic regulation and cell signaling. J. Cell. Physiol. 233: 1897-1912.   DOI
76 Kuramae EE, Robert V, Snel B, Boekhout T. 2006. Conflicting phylogenetic position of Schizosaccharomyces pombe. Genomics 88: 387-393.   DOI
77 Kumada K, Yanagida M, Toda T. 1996. Caffeine-resistance in fission yeast is caused by mutations in a single essential gene, crm1+. Mol. Gen. Genet. 250: 59-68.
78 Lev S, Li C, Desmarini D, Sorrell TC, Saiardi A, Djordjevic JT. 2019. Fungal kinases with a sweet tooth: Pleiotropic roles of their phosphorylated inositol sugar products in the pathogenicity of Cryptococcus neoformans present novel drug targeting opportunities. Front. Cell Infect. Microbiol. 9: 248.   DOI
79 Saiardi A, Sciambi C, McCaffery JM, Wendland B, Snyder SH. 2002. Inositol pyrophosphates regulate endocytic trafficking. Proc. Natl. Acad. Sci. USA 99: 14206-14211.   DOI
80 Benko Z, Miklos I, Carr AM, Sipiczki M. 1997. Caffeine-resistance in S. pombe: mutations in three novel caf genes increase caffeine tolerance and affect radiation sensitivity, fertility, and cell cycle. Curr. Genet. 31: 481-487.   DOI
81 Vivancos AP, Castillo EA, Jones N, Ayte J, Hidalgo E. 2004. Activation of the redox sensor Pap1 by hydrogen peroxide requires modulation of the intracellular oxidant concentration. Mol. Microbiol. 52: 1427-1435.   DOI
82 Toda T, Shimanuki M, Saka Y, Yamano H, Adachi Y, Shirakawa M, et al. 1992. Fission yeast pap1-dependent transcription is negatively regulated by an essential nuclear protein, crm1. Mol. Cell. Biol. 12: 5474-5484.   DOI
83 Benko Z, Fenyvesvolgyi C, Pesti M, Sipiczki M. 2004. The transcription factor Pap1/Caf3 plays a central role in the determination of caffeine resistance in Schizosaccharomyces pombe. Mol. Genet. Genomics. 271: 161-170.   DOI
84 Wemmie JA, Szczypka MS, Thiele DJ, Moye-Rowley WS. 1994. Cadmium tolerance mediated by the yeast AP-1 protein requires the presence of an ATP-binding cassette transporter-encoding gene, YCF1. J. Biol. Chem. 269: 32592-32597.   DOI
85 Jungwirth H, Wendler F, Platzer B, Bergler H, Hogenauer G. 2000. Diazaborine resistance in yeast involves the efflux pumps Ycf1p and Flr1p and is enhanced by a gain-of-function allele of gene YAP1. Eur. J. Biochem. 267: 4809-4816.   DOI
86 Nishijima H, Nishitani H, Saito N, Nishimoto T. 2003. Caffeine mimics adenine and 2'-deoxyadenosine, both of which inhibit the guanine-nucleotide exchange activity of RCC1 and the kinase activity of ATR. Genes Cells 8: 423-435.   DOI
87 Wikoff D, Welsh BT, Henderson R, Brorby GP, Britt J, Myers E, et al. 2017. Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children. Food Chem. Toxicol. 109(Pt 1): 585-648.   DOI
88 Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE. 1999. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 51: 83-133.
89 Wharton W, Goz B. 1979. Induction of alkaline phosphatase activity in HeLa cells. Inhibition by xanthine derivatives and thermostability studies. Biochem. Pharmacol. 28: 763-768.   DOI
90 Wells JN, Miller JR. 1988. Methylxanthine inhibitors of phosphodiesterases. Methods Enzymol. 159: 489-496.   DOI
91 Jacoby JJ, Nilius SM, Heinisch JJ. 1998. A screen for upstream components of the yeast protein kinase C signal transduction pathway identifies the product of the SLG1 gene. Mol. Gen. Genet. 258: 148-155.   DOI
92 Martin H, Rodriguez-Pachon JM, Ruiz C, Nombela C, Molina M. 2000. Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae. J. Biol. Chem. 275: 1511-1519.   DOI
93 Kuranda K, Leberre V, Sokol S, Palamarczyk G, Francois J. 2006. Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/cAMP signalling pathways. Mol. Microbiol. 61: 1147-1166.   DOI
94 Kim H, Thak EJ, Yeon JY, Sohn MJ, Choo JH, Kim JY, et al. 2018. Functional analysis of Mpk1-mediated cell wall integrity signaling pathway in the thermotolerant methylotrophic yeast Hansenula polymorpha. J. Microbiol. 56: 72-82.   DOI
95 Reinke A, Chen JC, Aronova S, Powers T. 2006. Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. J. Biol. Chem. 281: 31616-31626.   DOI
96 Lum PY, Armour CD, Stepaniants SB, Cavet G, Wolf MK, Butler JS, et al. 2004. Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116: 121-137.   DOI
97 Li C, Lev S, Saiardi A, Desmarini D, Sorrell TC, Djordjevic JT. 2016. Identification of a major IP5 kinase in Cryptococcus neoformans confirms that PP-IP5/IP7, not IP6, is essential for virulence. Sci. Rep. 6: 23927.   DOI
98 Burton A, Hu X, Saiardi A. 2009. Are inositol pyrophosphates signalling molecules? J. Cell. Physiol. 220: 8-15.   DOI
99 Chakraborty A, Koldobskiy MA, Bello NT, Maxwell M, Potter JJ, Juluri KR, et al. 2010. Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain. Cell 143: 897-910.   DOI
100 York SJ, Armbruster BN, Greenwell P, Petes TD, York JD. 2005. Inositol diphosphate signaling regulates telomere length. J. Biol. Chem. 280: 4264-4269.   DOI
101 Ribeiro JC, Barnetson AR, Jackson P, Ow K, Links M, Russell PJ. 1999. Caffeine-increased radiosensitivity is not dependent on a loss of G2/M arrest or apoptosis in bladder cancer cell lines. Int. J. Radiat. Biol. 75: 481-492.   DOI
102 Cortez D. 2003. Caffeine inhibits checkpoint responses without inhibiting the ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases. J. Biol. Chem. 278: 37139-37145.   DOI
103 Tornaletti S, Russo P, Parodi S, Pedrini AM. 1989. Studies on DNA binding of caffeine and derivatives: evidence of intercalation by DNA-unwinding experiments. Biochim. Biophys. Acta 1007: 112-115.   DOI
104 Harvey AN, Savage JR. 1994. A case of caffeine-mediated cancellation of mitotic delay without enhanced breakage in V79 cells. Mutat. Res. 304: 203-209.   DOI
105 Asaad NA, Zeng ZC, Guan J, Thacker J, Iliakis G. 2000. Homologous recombination as a potential target for caffeine radiosensitization in mammalian cells: reduced caffeine radiosensitization in XRCC2 and XRCC3 mutants. Oncogene 19: 5788-5800.   DOI