• Title/Summary/Keyword: Check valve

Search Result 211, Processing Time 0.028 seconds

A Study on Unsteady Flow and Movement around a Check Valve in a Scroll Compressor (스크롤 압축기 밸브주변의 비정상유동과 밸브거동에 관한 연구)

  • Lee, Jin-Kab;Rew, Ho-Seon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.108-113
    • /
    • 1999
  • In a scroll compressor it is generally accepted that a check valve is necessary to prevent reverse rotation of the scrolls. The check valve is subjected to discharge pulsations and their resultant forces. The flow phenomena around the check valve may affect the efficiency and the noise level significantly. The motivation of this study is to understand the flow phenomena and the unstable motion of the check valve on operating conditions in order to identify reasons raising noise and improve the performance of the check valve. In this study, unsteady flow simulation was performed using CFD and the pressure distribution around the check valve was obtained. This paper also shows that unstable motion of the check valve on standard operating conditions through theoretical analysis and flow visualization.

  • PDF

A Study on the Modeling and Optimization of Check Valve in Automatic Transmission (자동변속기내 체크밸브의 모델링 및 최적화 연구)

  • 송재수;정우진;김성원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.111-119
    • /
    • 1997
  • The operating characteristics of the check valve in the clutch piston of an automatic transmission have a great effect on the shifting performance. This paper addresses the modeling, dynamic analysis, and optimization of the check valve. It was found that the vortex causes a pressure drop, which is related to the rotating speed of the clutch piston, oil volume discharged from the check valve, and valve geometry. Maximizing the oil volume discharged, geometry of the check valve is optimized. The results can be used to design an improved check valve which provides a suitable oil pressure curves for achieving smoother shifting.

  • PDF

Characterisic Experiment of Tilting Check Valve for Nuclear Power Plant(II) (원자력 발전소용 Tilting Check Valve의 특성실험 (II))

  • Yeom, Man-O
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.803-812
    • /
    • 1998
  • In this study, testing equipment with which several kinds of valves can be tested was composed. Two kinds of tilting check valves and a swing check valve were tested to analyze their dynamic characteristics. The results of the experiment showed that the tilting check valves protected the pump but that the swing check valve could not protect the pump when the reverse flow rate was high. Also the dynamic equation of the tilting check valve was formulated and simulated using system characteristic constant t$_{c}$ and one method of predicting t$_{c}$ by comparing the results of the simulation with the results of the experiment was proposed.sed.

A Study on the Nonlinear Behavior of Check Valve System (체크밸브의 비선형거동에 관한 연구)

  • 박철희;홍성철;박용석
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.221-230
    • /
    • 1994
  • This paper deals with the dynamic stability and the nonlinear behavior of a check valve system. The nonlinear equations of motion of fluid-valve interation model are derived, which are composed of the unsteady Bernoulli's equation included the jet flow mechanism and equation of motion of a check valve formulated by one degree of freedom. Also, the derived equations of motion are nondimensionalized. According to the change of the nondimensional parameters, the stabilities of the system are analyzed, and the nonlinear interaction responses of the check valve and the passing flow rate are obtained. As the results, the stability charts are constructed for the variation of nondimensional parameters. It is shown that self-excited vibrations exist in a check valve system. And also the Hopf bifurcation and the periodic doubling are found. The presented theoretical model of a check valve system can be utilized to the design and operation of a piping system with the check valve.

  • PDF

Improvement of the Model for Predicting Swing Check Valve Opening (스윙형 역지 밸브 개도 예측 모델 개선)

  • Kim, Yang-seok;Song, Seok-yoon;Kim, Dae-woong;Park, Sung-keun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.315-320
    • /
    • 2004
  • Swing check valves are the most common type of check valve in nuclear power plant and need to be operated property to perform their functions and to keep the valve internals stable. However, for a swing check valve disc to remain stable, the opening characteristics should be identified and the upstream flow velocity should be enough to hold the disc fully open and without motion. Thus it is necessary to develop a model for predicting the flow velocity for a given disc opening. In the present study, the disc positions with mean flow velocity were measured for 3 inch and 6 inch swing check valves. Comparison of the measurements with the existing models showed that the models underestimate the mean flow velocity for a given disc position. Therefore, the existing model for predicting swing check valve disc position was improved with the realistic disc impingement area perpendicular to the flow stream and the experimental data. The result showed that the improved model with the best estimate of kb = 0.04 predicts well the disc openings of 6 inch swing check valve, especially in the low velocity region. For better prediction of the disc opening at high flow velocity, however, it is recommended to develop a kb correlation with the disc angle.

  • PDF

Effects of Design Variation of Check Valve on the Scroll Compressor Performance (체크밸브의 설계변수가 스크롤 압축기 성능에 미치는 영향)

  • Kim, Myeong Kyun;Lee, Jin Kab;Kim, Hyun Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.4 s.5
    • /
    • pp.24-30
    • /
    • 1999
  • An analytical study has been carried out to investigate the effects of the check valve installation on the volumetric and adiabatic efficiencies in a scroll compressor. Both the valve displacement limit and the valve stiffness affected the valve motion, the pressure upstream of the valve, and the pattern of the mass flow through the valve to the discharge plenum. Nonetheless, the presence of the check valve did not cause any noticeable change in the volumetric efficiency. Only a slight increase in the compression work was needed to overcome the pressure increase in front of the valve. The pressure build-up upstream of the valve can be alleviated with the larger limit of the valve lift and a smaller valve stiffness.

  • PDF

Design Criteria of Spring Stiffness for Pan Check Valve Using CFD Analysis (CFD 해석을 이용한 판형 체크 밸브에 대한 스프링 강성의 설계 기준)

  • Park, Ju-Yong;Baek, Seok-Heum;Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.49-55
    • /
    • 2014
  • This paper examines the effects of spring characteristics and stiffness in relation to the characteristics of hydrodynamic force. Spring forces and stiffness determine the performance of this type of pan check valve and have an effect on the overall operation. The hydraulic efficiency of the pan check valve is relatively low compared to that of a common check valve. However, a pan check valve is structurally more stable than a common check valve. We implemented the optimum design to increase the flow rate and to resolve the suppression of the pressure drop according to the extent of the compression of the spring. From the results of a flow analysis, we demonstrate spring stiffness design criteria depending on the extent of the compression of the spring of pan check valve acting on the fluid at the inlet 1 MPa pressure.

Neural Network Approach to Automated Condition Classification of a Check Valve by Acoustic Emission Signals

  • Lee, Min-Rae;Lee, Joon-Hyun;Song, Bong-Min
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.509-519
    • /
    • 2007
  • This paper presents new techniques under development for monitoring the health and vibration of the active components in nuclear power plants, The purpose of this study is to develop an automated system for condition classification of a check valve one of the components being used extensively in a safety system of a nuclear power plant. Acoustic emission testing for a check valve under controlled flow loop conditions was performed to detect and evaluate disc movement for valve failure such as wear and leakage due to foreign object interference in a check valve, It is clearly demonstrated that the evaluation of different types of failure types such as disc wear and check valve leakage were successful by systematically analyzing the characteristics of various AE parameters, It is also shown that the leak size can be determined with an artificial neural network.

Development of a Diagnostic Algorithm with Acoustic Emission Sensors and Neural networks for Check Valves

  • Seong, Seung-Hwan;Kim, Jung-Soo;Hur, Seop;Kim, Jung-Tak;Park, Won-Man
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.540-548
    • /
    • 2004
  • Check valve failure is one of the worst problems in nuclear power plants. Recently, many researches have been based on new technology using accelerometers and ultrasonic and magnetic flux detection have been carried out. Here, we have suggested a method that uses acoustic emission sensors for detecting the failures of check valves through measuring and analyzing backward leakage flow, a system that works without disassembling the check valve. For validating the suggested acoustic emission sensor methodology, we designed a hydraulic test loop with a check valve. We have assumed in this study that check valve failure is caused by disk wear or by the insertion of a foreign object. In addition, we have developed diagnostic algorithms by using a neural network model to identify the type and size of the failure in the check valve. Our results show that the proposed diagnostic algorithm with acoustic emission sensors is a good solution for identifying check valve failure without necessitating any disassembly work.

Condition Monitoring of Check Valve Using Neural Network

  • Lee, Seung-Youn;Jeon, Jeong-Seob;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2198-2202
    • /
    • 2005
  • In this paper we have presented a condition monitoring method of check valve using neural network. The acoustic emission sensor was used to acquire the condition signals of check valve in direct vessel injection (DVI) test loop. The acquired sensor signal pass through a signal conditioning which are consisted of steps; rejection of background noise, amplification, analogue to digital conversion, extract of feature points. The extracted feature points which represent the condition of check valve was utilized input values of fault diagnosis algorithms using pre-learned neural network. The fault diagnosis algorithm proceeds fault detection, fault isolation and fault identification within limited ranges. The developed algorithm enables timely diagnosis of failure of check valve’s degradation and service aging so that maintenance and replacement could be preformed prior to loss of the safety function. The overall process has been experimented and the results are given to show its effectiveness.

  • PDF