Browse > Article
http://dx.doi.org/10.14775/ksmpe.2014.13.3.049

Design Criteria of Spring Stiffness for Pan Check Valve Using CFD Analysis  

Park, Ju-Yong (Dong-A University, School of Mechanical Engineering)
Baek, Seok-Heum (DNDE Inc., EN3S Team)
Kang, Jung-Ho (Dong-A University, School of Mechanical Engineering)
Publication Information
Journal of the Korean Society of Manufacturing Process Engineers / v.13, no.3, 2014 , pp. 49-55 More about this Journal
Abstract
This paper examines the effects of spring characteristics and stiffness in relation to the characteristics of hydrodynamic force. Spring forces and stiffness determine the performance of this type of pan check valve and have an effect on the overall operation. The hydraulic efficiency of the pan check valve is relatively low compared to that of a common check valve. However, a pan check valve is structurally more stable than a common check valve. We implemented the optimum design to increase the flow rate and to resolve the suppression of the pressure drop according to the extent of the compression of the spring. From the results of a flow analysis, we demonstrate spring stiffness design criteria depending on the extent of the compression of the spring of pan check valve acting on the fluid at the inlet 1 MPa pressure.
Keywords
Pan Check Valve; Spring Stiffness; Hydrodynamic Force; Computational Fluid Dynamics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kruisbrink, A. C. H. and Thorley, A. R. D., "Dynamic Characteristics for Damped Check Valves," 2nd International Conference on Water Pipeline Systems, BHR Group Ltd., Edinburgh, Scotland, U.K., May 24-26, 1994.
2 Sibilla, S., and Gallati, M., "Hydrodynamic Characterization of a Nozzle check Valve by Numerical Simulation," ASME J. Fluids Eng., Vol. 130, pp. 121101, 2008.   DOI   ScienceOn
3 Thorley, A. R. D., "Check Valve Behaviour Under Transient Flow Conditions: A State of-the-Art Review," ASME J. Fluids Eng., Vol. 111, pp. 178-183, 1989.   DOI
4 Norton, R. L., Machine Design-An Integrated Approach (3rd Edition), Prentice Hall, New Jersey, USA, 2005.
5 Botros, K. K., "Spring Stiffness Selection Criteria for Nozzle Check Valves Employed in Compressor Stations," ASME J. Eng. Gas Turbines Power, Vol. 133, pp. 122401, 2011.   DOI
6 Botros, K. K., Jones, J. B., and Roorda, O., "Effects of Compressibility on Flow Characteristics and Dynamics of Swing Check Valves-Part I," ASME J. Pressure Vessel Technol., Vol. 119, pp. 192-198, 1997.   DOI   ScienceOn
7 Botros, K. K., and Roorda, O., "Effects of Compressibility on Flow Characteristics and Dynamics of Swing Check Valves-Part II," ASME J. Pressure Vessel Technol., Vol. 119, pp. 199-206, 1997.   DOI   ScienceOn
8 ANSYS CFX, User Manual Release 10, SAS IP, Inc., 2007.
9 Baek, S. H., Jung, W. H., and Kang, S., "Shape Optimization of Impeller Blades for Bidirectional Axial Flow Pump," Trans. of the KSME(B), Vol. 36, No. 12, pp. 1141-1150, 2012.   과학기술학회마을   DOI   ScienceOn
10 Song, X. G., Wang, L., Baek, S. H., and Park, Y. C., "Multidisciplinary Optimization of a Butterfly Valve," ISA Trans., Vol. 48, No. 3, pp. 370-377, 2009.   DOI   ScienceOn