• Title/Summary/Keyword: Chebyshev subspace

Search Result 6, Processing Time 0.015 seconds

PSEUDO-CHEBYSHEV SUBSPACES IN $L^1$

  • Mohebi, H.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.2
    • /
    • pp.585-595
    • /
    • 2000
  • We give various characterizations of pseudo -Chebyshev Subspaces in the spaces $L^1$(S,${\mu}$) and C(T).

CONTINUITY OF ONE-SIDED BEST SIMULTANEOUS APPROXIMATIONS

  • Lee, Mun-Bae;Park, Sung-Ho;Rhee, Hyang-Joo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.743-753
    • /
    • 2000
  • In the space $C_1(X)$ of real-valued continuous functions with $L_1-norm$, every bounded set has a relative Chebyshev center in a finite-dimensional subspace S. Moreover, the set function $F\rightarrowZ_S(F)$ corresponding to F the set of its relative Chebyshev centers, in continuous on the space B[$C_1(X)$(X)] of nonempty bounded subsets of $C_1(X)$ (X) with the Hausdorff metric. In particular, every bounded set has a relative Chebyshev center in the closed convex set S(F) of S and the set function $F\rightarrowZ_S(F)$(F) is continuous on B[$C_1(X)$ (X)] with a condition that the sets S(.) are equal.

  • PDF

BEST APPROXIMATIONS IN $L_{p}$(S,X)

  • Lee, Mun-Bae;Park, Sung-Ho;Rhee, Hyang-Joo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.589-597
    • /
    • 1999
  • Let G be a closed subspace of a Banach space X and let (S,$\Omega$,$\mu$) be a $\sigma$-finite measure space. It was known that $L_1$(S,G) is proximinal in $L_1$(S,X) if and only if $L_p$(S,G) is proximinal in $L_p$(S,X) for 1$\infty$. In this article we show that this result remains true when "proximinal" is replaced by "Chebyshev". In addition, it is shown that if G is a proximinal subspace of X such that either G or the kernel of the metric projection $P_G$ is separable then, for 0 < p $\leq$ $\infty$. $L_p$(S,G) is proximinal in $L_p$(S,X)

  • PDF

TWO-SIDED BEST SIMULTANEOUS APPROXIMATION

  • Rhee, Hyang Joo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.705-710
    • /
    • 2010
  • Let $C_1(X)$ be a normed linear space over ${\mathbb{R}}^m$, and S be an n-dimensional subspace of $C_1(X)$ with spaned by {$s_1,{\cdots},s_n$}. For each ${\ell}$- tuple vectors F in $C_1(X)$, the two-sided best simultaneous approximation problem is $$\min_{s{\in}S}\;\max\limits_{i=1}^\ell\{{\parallel}f_i-s{\parallel}_1\}$$. A $s{\in}S$ attaining the above minimum is called a two-sided best simultaneous approximation or a Chebyshev center for $F=\{f_1,{\cdots},f_{\ell}\}$ from S. This paper is concerned with algorithm for calculating two-sided best simultaneous approximation, in the case of continuous functions.

DISCRETE SIMULTANEOUS ℓ1m-APPROXIMATION

  • RHEE, HYANG J.
    • Honam Mathematical Journal
    • /
    • v.27 no.1
    • /
    • pp.69-76
    • /
    • 2005
  • The aim of this work is to generalize $L_1$-approximation in order to apply them to a discrete approximation. In $L_1$-approximation, we use the norm given by $${\parallel}f{\parallel}_1={\int}{\mid}f{\mid}d{\mu}$$ where ${\mu}$ a non-atomic positive measure. In this paper, we go to the other extreme and consider measure ${\mu}$ which is purely atomic. In fact we shall assume that ${\mu}$ has exactly m atoms. For any ${\ell}$-tuple $b^1,\;{\cdots},\;b^{\ell}{\in}{\mathbb{R}}^m$, we defined the ${\ell}^m_1{w}$-norn, and consider $s^*{\in}S$ such that, for any $b^1,\;{\cdots},\;b^{\ell}{\in}{\mathbb{R}}^m$, $$\array{min&max\\{s{\in}S}&{1{\leq}i{\leq}{\ell}}}\;{\parallel}b^i-s{\parallel}_w$$, where S is a n-dimensional subspace of ${\mathbb{R}}^m$. The $s^*$ is called the Chebyshev center or a discrete simultaneous ${\ell}^m_1$-approximation from the finite dimensional subspace.

  • PDF

THE OPERATORS 𝜋G OF BEST APPROXIMATIONS AND CONTINUOUS METRIC PROJECTIONS

  • RHEE, HYANG JOO
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.669-674
    • /
    • 2022
  • In this paper, we shall consider some properties of the metric projection as a set valued mapping. For a set G in a metric space E, the mapping 𝜋G; x → 𝜋G(x) of E into 2G is called set valued metric projection of E onto G. We investigated the properties related to the projection PS(·)(·) and 𝜋S(·)(·) as one-sided best simultaneous approximations.