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THE OPERATORS πG OF BEST APPROXIMATIONS AND

CONTINUOUS METRIC PROJECTIONS†

HYANG JOO RHEE

Abstract. In this paper, we shall consider some properties of the metric
projection as a set valued mapping. For a set G in a metric space E, the

mapping πG;x → πG(x) of E into 2G is called set valued metric projection

of E onto G. We investigated the properties related to the projection
PS(·)(·) and πS(·)(·) as one-sided best simultaneous approximations.
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1. Introduction

Let E be a normed linear space and G be a linear subspace of E. We define
a functional ϑG on E by

ϑG(x) = inf
g∈G

||x− g||.

Every g0 ∈ G with this property is called an element of best approximation of
x. We shall denote by PG(x) the set of all elements of best approximation of x
by elements of the set G. That is,

PG(x) = {g0 ∈ G | ||x− g0|| = ϑG(x)}.
Then one defines a set-valued mapping from the domain D(πG) ⊂ E to G by
the condition

πG(x) ∈ PG(x).

The space E is said to be proximinal if D(πG) = E. And the linear subspace
G is said to be semi-Chebyshev if for any x ∈ D(πG), πG(x) is a single-valued
mapping. The mapping πG and ϑG are non-linear on E\G, but the restriction
of πG to G is linear and ϑG|G = 0.
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In the particular case when G is a Chebyshev set, that is, PG(x) is the sin-
gleton for each x ∈ E, πG is called the metric projection(or best approximation
operator, or Chebyshev map) of E onto G. Then we have πG is continuous at
the origin and ϑG is continuous on E, [8].

Some properties of the mapping πG onto linear subspace of normed linear
spaces are the following theorem.

Theorem 1.1. Let E be a normed linear space and G be a linear subspace of
E. Then the mapping πG is idempotent and continuous at each point g ∈ G.

Proof. For every g ∈ G we have, πG(g) = g whence, for an arbitrary x ∈ D(πG),
we have

π2
G(x) = πG[πG(x)] = πG(x),

that is, the mapping πG is idempotent. So, for any x, y ∈ D(πG) we have

||x− πG(x)|| ≤ ||x− πG(y)|| ≤ ||x− y||+ ||y − πG(y)||
thus

||x− πG(x)|| − ||y − πG(y)|| ≤ ||x− y||.
Changing in these relations x by y, we obtain the inequalities

||y − πG(y)|| − ||x− πG(x)|| ≤ ||x− y||
for any x, y ∈ D(πG). That is,

| ||x− πG(x)|| − ||y − πG(y)|| | ≤ ||x− y||
for any x, y ∈ D(πG). Obviously, 0 ∈ G, by taking y = 0, we have

||x− πG(x)|| ≤ ||x||.
Finally, for any x ∈ D(πG),

||πG(x)|| ≤ ||x− πG(x)||+ ||x|| ≤ 2||x||.
Consequentially, πG is continuous at the origin. Let x ∈ D(πG) and g ∈ G. For
any g′ ∈ G,

||x+ g − g′|| ≥ ||x− πG(x)|| = ||x+ g − (πG(x) + g)||,
thus x+ g ∈ D(πG). Since πG is single-valued on D(πG), we have

πG(x+ g) = πG(x) + g.

Hence, for any sequence xn ∈ D(πG) and xn → g0 ∈ G imply that πG(xn) →
πG(g0) = g0, that is, πG is continuous at each point g ∈ G. □

Proposition 1.2. Let E be a normed linear space and let G be a finite dimen-
sional Chebyshev subspace of E, hence D(πG) = E and πG is single-valued on
E. Then the mapping πG is continuous on E.

Corollary 1.3. Suppose that G is a Chebyshev subspace of a normed linear space
E, and πG is continuous at each point of π−1

G (0). Then the metric projection πG

is continuous.
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Proof. Let x0 ∈ π−1
G (0). Suppose that there exists a sequence xn → x0 with

πG(xn) ↛ πG(x0). Then xn − πG(x0) → x0 − πG(x0) ∈ π−1
G (0). But πG(xn −

πG(x0)) = πG(xn)− πG(x0) ↛ 0. It is a contradiction, so the metric projection
πG is continuous. □

2. Semi-continuity and continuity of set-valued metric projections

In the foregoing we have considered the metric projections onto Chebyshev
subspaces. In this section, we shall consider the metric projection in its full
generally as a set-valued mapping.

For a set G in a metric space E, the mapping PG : x → PG(x) of E into
2G(the collection of all subsets of G) is called the set-valued metric projection
of E onto G. Let X,Y be metric spaces, a set valued mapping F : X → 2Y and
x0 ∈ X. Then F is said to be :

(1) upper semicontinuous(u.s.c.) at x0 if for any open set V in Y such that
F (x0) ⊂ V , then there exists a neighborhood U of x0 such that F (x) ⊂ V
for each x ∈ U.

(2) lower semicontinuous(l.s.c.) at x0 if for any open set V in Y such that
F (x0) ∩ V ̸= ∅, then there exists a neighborhood U of x0 such that F (x)∩
V ̸= ∅ for each x ∈ U.

(3) upper Hausdorff semicontinuous(u.H.s.c.) at x0 if for any ε > 0, there exi-
sts a neighborhood U of x0 such that F (x) ⊂ Bε(F (x0)) for each x ∈ U.

(4) lower Hausdorff semicontinuous(l.H.s.c.) at x0 if for any ε > 0, there exi-
sts a neighborhood U of x0 such that F (x0) ⊂ Bε(F (x)) for each x ∈ U.

(5) Hausdorff continuous at x0 if F is both lower and upper Hausdorff semi-
continuous at x0.

(6) A set G is an “approximatively compact ” set in a metric space E if for
every x ∈ E and {gn} ⊂ G with limn→∞ d(x, gn) = d(x,G) there exists a
subsequence {gnk

} converging to an element of G.
For lower semi-continuity the easier implications are reversed, if U : E → 2G

is l.H.s.c. at x0, then U is l.s.c.at x0 and conversely, if U is l.s.c.at x0 and U(x0)
is compact, then U is l.H.s.c. at x0, [9]. However it is not known any example
of a l.s.c. metric projection PG which is not l.H.s.c. For metric projections onto
linear subspaces we have the following stronger result.

Theorem 2.1. [10] For a linear subspace G of a normed linear space E and for
x0 ∈ E, the following statements are equivalent:

(1) PG is u.s.c.at x0

(2) PG is u.H.s.c.at x0 and PG(x0) is compact.

We have the following extension of Proposition 1.2.

Corollary 2.2. Suppose that a set G is an approximatively compact in a metric
space E. Then PG is u.s.c.

Proof. Since the set G is an approximatively compact in a metric space E, G
is proximinal and PG(x) is closed and bounded. Let N be an arbitrary closed
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subset of G. We shall show that the set

B = {x ∈ E : PG(x) ∩N ̸= ∅}

is closed, which will complete the proof. Let {xn} be a sequence in B with
converging to an element x ∈ E. There exists a sequence {gn} ⊂ G such that

lim
n→∞

d(x, gn) = d(x,G).

Consequently, G being approximatively compact, there exists a subsequence
{gnk

} converging to an element g0 ∈ G such that d(x, g0) = d(x,G), that is
g0 ∈ PG(x) ∩N , whence x ∈ B. □

Proposition 2.3. For every finite-dimensional linear subspace G of a normed
linear space E, PG is u.s.c., and hence also u.H.s.c.

If G is a proximinal set, but not approximatively compact, then the conclu-
sions of corollary 2.2. and proposition 2.3 may be no longer valid, as shown by
the following example : Let E = ℓ2 and let G be the sequence

g1 = 0, gn = {1, 1
n
, 0, . . . , 0︸ ︷︷ ︸

n−1

, 1, 0, . . . } (n = 2, 3, · · · ).

3. Continuity of the metric projection πS(·)(·)

In this chapter, we observe the properties related to the metric projection in
the space C(X) with L1-norm, C1(X). We will consider exact conditions on
a finite-dimensional subspace S of C1(X) which imply that there exists a one-
sided best simultaneous L1-approximation for each compact subset F ⊂ C1(X)
from S(F ) and we find the characterizations of the one-sided best simultaneous
L1-approximation. Moreover, we have a necessary and sufficient conditions on a
subspace S of C1(X) in order that for each compact set F , the metric projection
PS(F )(F ) is semi-continuous and continuous.

Now we define a norm on the space of all ℓ-tuples of functions in C(X) as
follow: for any ℓ elements f1, · · · , fℓ in C(X), let F = (f1, · · · , fℓ) and

||F || = ||(f1, · · · , fℓ)|| = max
(w1,··· ,wℓ)∈A

||
ℓ∑

i=1

wifi||1

where X is a compact subset of RN and A = {(w1, · · · , wℓ) |
∑ℓ

i=1 wi = 1 and
wi > 0 for i = 1, · · · , ℓ}. Let S be a finite subspace of C(X). We define the set,
for i = 1, · · · , ℓ,

S(fi) = {s ∈ S | s(x) ≤ fi(x) for x ∈ X}

and the set

S(F ) =

ℓ⋂
i=1

S(fi)
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in normed linear space (C(X), || · ||1). By the definition of S(F ), if S contains a
strictly positive function, then S(F ) is non-empty for every ℓ-tuple F of functions
in C(X). Throughout this chapter we shall restrict to those F for which S(F )
is non-empty.

For each ℓ-tuple F of C(X), S(F ) is a closed and convex subset of C1(X).
The metric projection P : F → PS(F )(F ) is a set valued map the approximating
set depends on some ℓ-tuple F . Now we consider a continuity of the projection
PS(·)(·).

Remark 3.1. For each ℓ-tuple F = (f1, · · · , fℓ) of functions in C1(X), a min-
imizing sequence in S(F ) is bounded, so the sequence has a subsequence which
is convergent in S(F ). Thus S(F ) is approximatively compact relative to F .

Mabizela [11] prove that for each F , S(F ) is a m-dimensional subspace of
C1(X), if Fn converges to F0, then the map S(·) is Hausdorff continuous on F0.
Thus we can show that the following proposition.

Proposition 3.1. [12] For each ℓ-tuple F = (f1, · · · , fℓ) of functions in C1(X),
the metric projection P : F → PS(F )(F ) is upper semicontinuous.

Corollary 3.2. Let f ∈ C1(X) be given. Assume that S(f) is an “approxima-
tively compact” subset of S. If the map f → S(f) is Hausdorff continuous at f
then P : f → PS(f)(f) is upper semicontinuous.

Theorem 3.3. Let S be a set in C1(X). If S is a Chebyshev and “approxima-
tively compact”, then πS(·)(·) is continuous on C1(X).

Proof. By hypothesis, S is a Chebyshev, we can take PS(·)(·)=πS(·)(·). So πS(·)(·)
is upper semicontinuous by corollary 3.2. The proof completes by to show that
πS(·)(·) is lower semicontinuous. For any closed set V , let

π−1
S(·)(V ) = {F |πS(F )(F ) ∩ V ̸= ∅}.

It suffices to show that π−1
S(·)(V ) is closed. Let {Fn} ⊂ π−1

S(F )(V ) be a sequence

such that {Fn} converge to F0 with respect to Hausdorff metric, denote that
H(Fn, F0) → 0 as n → ∞. We can take vn ∈ πS(Fn)(Fn)∩V for all n ∈ N. Since
S is approximatively compact, there is a subsequence {vnk

} which converge to
v0 ∈ S with v0 ∈ πS(F0)(F0) ∩ V , that is, π−1

S(·)(V ) is closed. □

The motivation is the one-sided best approximation of an element, which has
been studied by R. Bojanic, R. DeVore(1966), H. Strauss(1982), G. Nürnberger
(1985), A. Pinkus and V. Totik(1986). They proved, by looking at Gaussian-
type quadrature formula, the existence of f ∈ C[a, b] with more than the
best one-sided L1-approximation from πn. They also showed, for f continu-
ous on [a, b] and differentiable on (a, b), the uniqueness of the best one-sided
L1-approximation from πn. DeVore essentially generalized these results to T -
and ET2-systems [1].
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It is also natural to raise the problem of extending to study weakly semi-
continuous PG and those PG which are Lipschitzian for the Hausdorff metric
on 2G \ ∅, or to find a suitable generalization of linearity for set-valued PG and
then give characterizations of those linear subspaces G for which PG has this
property.
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