• Title/Summary/Keyword: Charge-Transfer

Search Result 1,027, Processing Time 0.027 seconds

Low-Voltage-Stress AC-Linked Charge Equalizing System for Series-Connected VRLA Battery Strings

  • Karnjanapiboon, Charnyut;Jirasereeamornkul, Kamon;Monyakul, Veerapol
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.186-196
    • /
    • 2013
  • This paper presents a low voltage-stress AC-linked charge equalizing system for balancing the energy in a serially connected, valve-regulated lead acid battery string using a modular converter that consists of multiple transformers coupled together. Each converter was coupled through an AC-linked bus to increase the overall energy transfer efficiency of the system and to eliminate the problem of the unbalanced charging of batteries. Previous solutions are based on centralized and modularized topologies. A centralized topology requires a redesign of the hardware and related components. It also faces a high voltage stress when the number of batteries is expanded. Modularized solutions use low-voltage-stress, double-stage, DC-linked topologies which leads to poor energy transfer efficiency. The proposed solution uses a low-voltage stress, AC-linked, modularized topology that makes adding more batteries easier. It also has a better energy transfer efficiency. To ensure that the charge equalization system operates smoothly and safely charges batteries, a small intelligent microcontroller was used in the control section. The efficiency of this charge equalization system is 85%, which is 21% better than other low-voltage-stress DC-linked charging techniques. The validity of this approach was confirmed by experimental results.

A study for gas distribution in separators of molten carbonate fuel cell (용융 탄산염 연료전지의 분리판 내 연료 분배 해석)

  • Park, Joonho;Cha, Suk Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.82.2-82.2
    • /
    • 2011
  • A channel design which is closely related with the mass transport overpotential is one of the most important procedures to optimize the whole fuel cell performance. In this study, three dimensional results of a numerical study for gas distribution in channels of a molten carbonate fuel cell (MCFC) unit cell for a 1kW class stack was presented. The relationship between the fuel and air distribution in the anode and cathode channels of the unit cell and the electric performance was observed. A charge balance model in the electrodes and the electrolyte coupled with a heat transfer model and a fluid flow model in the porous electrodes and the channels was solved for the mass, momentum, energy, species and charge conservation. The electronic and ionic charge balance in the anode and cathode current feeders, the electrolyte and GDEs were solved for using Ohm's law, while Butler-Volmer charge transfer kinetics described the charge transfer current density. The material transport was described by the diffusion and convection equations and Navier-Stokes equations govern the flow in the open channel. It was assumed that heat is produced by the electrochemical reactions and joule heating due to the electrical currents.

  • PDF

Silsesquioxane/Polystyrene Hybrid Materials via Charge Transfer Interactions (전하 이동을 이용한 실세스퀴옥산/폴리스티렌 하이브리드)

  • Choi, Ji-Won;Chujo, Yoshiki
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.136-140
    • /
    • 2007
  • Charge transfer interaction as a hybridization mechanism of silsesquioxane/polymer was tested using carbazole (electron donor) group and dinitrobenzene (electron acceptor) group. Hybridization test was conducted using films made from mixing/casting of poly (carbazole-styrene) (PS/D) and dimtrobenzyl silsesquioxane (Cube/A), and transparent hybrid films were successfully obtained under some conditions. $^1H-NMR$ of PS/D and Cube/A, and W absorption test of hybrid films showed that one acceptor and one donor can form one charge transfer complex when no silsesquioxane molecule was included in films, but transparent hybrids with no phase separation were obtained only at acceptor/donor ratios less than 0.7 : 1. These results also suggested that on average 4 charge transfer complexes form per one silsesquioxane.

Unidirectional Photo-induced Charge Separation and Thermal Charge Recombination of Cofacially Aligned Donor-Acceptor System Probed by Ultrafast Visible-Pump/Mid-IR-Probe Spectroscopy

  • Kim, Hyeong-Mook;Park, Jaeheung;Noh, Hee Chang;Lim, Manho;Chung, Young Keun;Kang, Youn K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.587-596
    • /
    • 2014
  • A new ${\pi}$-stacked donor-acceptor (D-A) system, [Ru(1-([2,2'-bipyridine]-6-yl-methyl)-3-(2-cyclohexa-2',5'-diene-1,4-dionyl)-1H-imidazole)(2,2':6',2"-terpyridine)]$[PF_6]_2$ (ImQ_T), has been synthesized and characterized. Similar to its precedent, [Ru(6-(2-cyclohexa-2',5'-diene-1,4-dione)-2,2':6',2"-terpyridine)(2,2':6',2"-terpyridine)]$[PF_6]_2$ (TQ_T), this system has a cofacial alignment of terpyridine (tpy) ligand and quinonyl (Q) group, which facilitates an electron transfer through ${\pi}$-stacked manifold. Despite the presence of lowest-energy charge transfer transition from the Ru-based-HOMO-to-Q-based-LUMO (MQCT) predicted by theoretical calculations by using time-dependent density functional theory (TD-DFT), the experimental steady-state absorption spectrum does not exhibit such a band. The selective excitation to the Ru-based occupied orbitals-to-tpy-based virtual orbital MLCT state was thus possible, from which charge separation (CS) reaction occurred. The photo-induced CS and thermal charge recombination (CR) reactions were probed by using ultrafast visible-pump/mid-IR-probe (TrIR) spectroscopic method. Analysis of decay kinetics of Q and $Q^-$ state CO stretching modes as well as aromatic C=C stretching mode of tpy ligand gave time constants of <1 ps for CS, 1-3 ps for CR, and 10-20 ps for vibrational cooling processes. The electron transfer pathway was revealed to be Ru-tpy-Q rather than Ru-bpy-imidazol-Q.

A Study on a Capacitance Displacement Sensor for the Ultraprecision Measurement (초정밀 측정용 정전용량 변위센서에 관한 연구)

  • An, Hyung-Jun;Jung, Yoon;Jung, Sung-Chun;Jang, In-Bae;Han, Dong-Chul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.291-295
    • /
    • 1996
  • This paper discusses several design factors of a capacitance displacement sensor with a numerical method and several experiments and describes guide lines of the design of this type sensor. We introduce the charge density method for the analysis of this type sensor, which has feasible accuracy and efficiency. The analysis of this type sensor with the charge density method agrees with displacement sensitivity experiments of a circular plate capacitance sensor with the sensor amp based In the charge transfer principle.

  • PDF

Mechanism of the Electrode Reduction of Cupferron in Neutral and Alkaline Media (중성 및 알카리성수용액에서 Cupferron 의 전극환원메카니즘)

  • Hwang, Kum-Sho;Hwang, Jung-Ui
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.11 no.1
    • /
    • pp.32-55
    • /
    • 1975
  • The ammonium salt of N-Nitrosophenylhydroxiamine, namely Cupferron, is a well-known analytical reagent which precipitates a great number of metal ions in acid medium. Various structures of electrode reduction for N-Nitrosophenylhydroxiamine have been suggested in acid and alkaline media by many researchers, but not in neutral medium. So the mechanism of electrode reaction of Cupferron was investigated by both chronopotentiometric and polarographic methods. It was estimated that the reduction of Cupferron occurs in a three-step mechanism through which a chemical step is interposed between two charge transfer, the ECE (charge transfer-chemical reaction-charge transfer) mechanism, over a range of neutral and alkaline media. The chemical reaction of the process was assumed to be acid-base catalyzed from the fact that kapp (over all rate constant) of chemical reaction is pH dependent.

  • PDF

Charge Transfer between STM Tip and Au(100) in Dry, H2O, and D2O Atmospheres

  • Utami, Anggi;Chung, Yonghwa;Lee, Chi-Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.153-156
    • /
    • 2013
  • Charge transfer between STM tip and Au(100) has been investigated by using a Scanning Tunneling Microscopy (STM) technique in dry, $H_2O$, and $D_2O$ atmospheres. Dry atmosphere was indicated by humidity as low as 5 % and high humidity as high as 98% was managed by injecting $H_2O$ and $D_2O$ to the chamber. The current decayed more slowly in high humidity than in dry atmosphere. The plateau currents were found to appear at separations larger than ca. $5{\AA}$ where the current decay stopped depending on applied bias voltages. The polarity dependence was observed at the STM junction between Pt-Ir tip and the gold. On the contrary, little dependence was seen at the one between Au tip and the substrate electrode.

Semi-Circular Potential Sweep Voltammetry: Electrochemically Quasi-Reversible System

  • Park, Kyungsoon;Hwang, Seongpil
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.379-383
    • /
    • 2020
  • The novel voltammetry using a semi-circular potential wave for quasi-reversible charge transfer system on electrode is theoretically investigated. Compared with conventional voltammetry based on linear sweep such as linear sweep voltammetry (LSV), semi-circular potential sweep voltammetry (SCV) may decrease the charging current outside the center of potential range and increase the faradaic current at the midpoint due to variable scan rate. In this paper, we investigate the system based on macroelectrode where simple 1 dimensional (1 D) diffusion system is valid with various charge transfer rate constant (k0). In order to observe the amplification at midpoint, voltammetric response with different midpoint ranging from -200 mV to 200 mV are studied. SCVs shows both the shift of peak potential and the amplification of peak current for quasi-reversible electrode reaction while only higher peak current is observed for reversible reaction. Moreover, the higher current at midpoint enable the amplification of current at low overpotential region which may assist the determination of onset potential as a figure-of-merit in electrocatalyst.

Electrical Bistable Characteristics of Organic Charge Transfer Complex for Memory Device Applications

  • Lee, Chang-Lyoul
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.278-283
    • /
    • 2015
  • In this work, the electrical bistability of an organic CT complex is demonstrated and the possible switching mechanism is proposed. 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and tetracyanoquinodimethane (TCNQ) are used as an organic donor and acceptor, respectively, and poly-methamethylacrylate (PMMA) is used as a polymeric matrix for spin-coating. A device with the Al/($Al_2O_3$)/PMMA:BCP:TCNQ[1:1:0.5 wt%]/Al configuration demonstrated bistable and switching characteristics similar to Ovshinsky switching with a low threshold voltage and a high ON/OFF ratio. An analysis of the current-voltage curves of the device suggested that electrical switching took place due to the charge transfer mechanism.

Formation of a complex between furfuryl derivatives and halides (Furfuryl유도체와 하라이드 사이의 Complex형성능)

  • Kim, You-Sun;O, Myeong-Won;Do, Jae-Beom
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.3
    • /
    • pp.221-228
    • /
    • 1970
  • The tendency of forming a charge transfer complex between furfuryl derivatives (2-methyl furan, furfuryl acetate, and Ethyl 2-furoate) and halides(Iodine, Iodine monochloride, and Trichloro bromo methane) was studied by means of ultra violet spectrophotometry. In case of furfuryl acetate the formation of the complex could not be distinctly detected by this method. Iodine and trichloro bromo methane could show a distinct formation of charge transfer complex in the U.V. region, whereas iodine monochloride shows a possibility of forming an addition compound rather than the charge transfer complex itself. The results were discussed in conjunction with the stability of the furfuryl ring.

  • PDF