Browse > Article
http://dx.doi.org/10.5757/ASCT.2015.24.6.278

Electrical Bistable Characteristics of Organic Charge Transfer Complex for Memory Device Applications  

Lee, Chang-Lyoul (Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST))
Publication Information
Applied Science and Convergence Technology / v.24, no.6, 2015 , pp. 278-283 More about this Journal
Abstract
In this work, the electrical bistability of an organic CT complex is demonstrated and the possible switching mechanism is proposed. 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and tetracyanoquinodimethane (TCNQ) are used as an organic donor and acceptor, respectively, and poly-methamethylacrylate (PMMA) is used as a polymeric matrix for spin-coating. A device with the Al/($Al_2O_3$)/PMMA:BCP:TCNQ[1:1:0.5 wt%]/Al configuration demonstrated bistable and switching characteristics similar to Ovshinsky switching with a low threshold voltage and a high ON/OFF ratio. An analysis of the current-voltage curves of the device suggested that electrical switching took place due to the charge transfer mechanism.
Keywords
Organic memory; Charge transfer complex; Electrical switching; Bistability; Retention; Filament;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature 347, 539 (1990).   DOI
2 T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, Nat. Photonics 6, 105 (2012).   DOI
3 H. Sirringhaus, N. Tessler, and R. H. Friend, Science 280, 1741 (1998).   DOI
4 Y. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. B. Mannsfeld, J. Chen, D. Nordlund, M. F. Toney, J. Huang, and Z. Bao, Nat. Commun. 5, 3005 (2014).   DOI
5 G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).   DOI
6 Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, Nat. Mater. Nat. Commun. 5, 5293 (2014).
7 N. Tessler, G. J. Denton, and R. H. Friend, Nature 382, 695 (1996).   DOI
8 A. Szymanski1, D. C. Larson, and M. M. Labes, Appl. Phys. Lett. 14, 88 (1969).   DOI
9 H. Carchano, R. Lacoste, and Y. Segui, Appl. Phys. Lett. 19, 414 (1971).   DOI
10 H. K. Henisch and W. R. Smith, Appl. Phys. Lett. 24, 589 (1974).   DOI
11 A. R. Elsharkawi and K. C. Kao, J. Phys. Chem. Solids. 38, 95. (1977).   DOI
12 S. R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968).   DOI
13 D. Ma, M. Aguiar, J. A. Freire, and I. A. Hummelgen, Adv. Mater. 12, 1063 (2000).   DOI
14 D. Tondelier, K. Lmimouni, D. Vuillaume C. Fery, and G. Haas, Appl. Phys. Lett. 85, 5763 (2004).   DOI
15 W. Tang, H. Shi, G. Xu, B. S. Ong, Z. D. Popovic, J. Deng, J. Zhao, and G. Rao, Adv. Mater. 17, 2307 (2005).   DOI
16 T. Tsujoka and H. Kondo, Appl. Phys. Lett. 83, 937 (2003).   DOI
17 A. Bandyopadhyay and A. J. Pal, Appl. Phys. Lett. 82, 1215 (2003).   DOI
18 A. Bandyopadhyay and A. J. Pal, Appl. Phys. Lett. 84, 999 (2004).   DOI
19 L. P. Ma, J. Liu, and Y. Yang, Appl. Phys. Lett. 80, 2997 (2002).   DOI
20 L. P. Ma, S. M. Pyo, J. Ouyang, Q. F. Xu, and Y. Yang, Appl. Phys. Lett. 82, 1419 (2003).   DOI
21 Q. Zhang, W. Wang, G. Ye, X. Yan, Z. Zhnag, and Z. Hua, Synth. Met. 144, 285 (2004).   DOI
22 J. Wu, L. P. Ma, and Y. Yang, Phys. Rev. B 69, 115321 (2004).   DOI
23 L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott, Appl. Phys. Lett. 84, 607 (2004).   DOI
24 R. S. Potember, T. O. Poehler, and D. O. Cowon, Appl. Phys. Lett. 34, 405 (1979).   DOI
25 X.-L. Mo, G.-R. Chen, Q.-J. Cai, Z.-Y. Fan, H.-H. Xu, Y. Ya, J. Yang, H.-H. Gu, and Z.-Y. Hua, Thin Solid Films 436, 259 (2003).   DOI
26 J. Li, Z. Xue, W. M. Liu, S. Hou, X. Li, and X. Zhao, Phys. Lett. A 266, 441 (2000).   DOI
27 K. Z. Wang, Z. Q. Xue, M. Ouyang, D. W. Wang, H. X. Zhang, and C. H. Huang, Chem. Phys. Lett. 243, 217 (1995).   DOI
28 T. Oyamada, H. Tanaka, K. Matsushige, H. Sasabe, and C. Adachi, Appl. Phys. Lett. 83, 1252 (2003).   DOI
29 J. Y. Ouyang, C.W. Chu, C. R. Szmanda, L. P. Ma and, Y. Yang, Nat. Mater. 3, 918 (2004).   DOI
30 C. W. Chu, J. Y. Ouyang, J.-H. Tseug, and Y. Yang, Adv. Mater. 17, 1440 (2005).   DOI
31 R. J. Tseng, J. Huang, J. Ouyang, R. B. Kaner, and Y. Yang, Nano Lett. 5, 1077 (2005).   DOI
32 B. Milian, R. Pou-Amerigo, R. Viruela and E. Orti, Chem. Phys. Lett. 391, 148 (2004).   DOI
33 M. S. Matos and M. H. Gehlen, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 60, 1421 (2004).   DOI
34 S.-H. Lee, S.-H. Oh, Y. Ji, J. Kim, R. Kang, D. Khim, S. Lee, J.-S. Yeo, N. Lu, M. J. Kim, H. C. Ko, T.-W. Kim, Y.-Y. Noh, and D.-Y. Kim, Org. Electron. 15, 1290 (2014).   DOI
35 R. M. Q. Mello, E. C. Azevedo, A. Meneguzzi, M. Aguiar, L. Akcelrud, and I. A. Hummelgen, Macromol. Mater. Eng. 287, 466 (2002).   DOI
36 Zhiwen Jin, Guo Liu, and Jizheng Wang, AIP Adv. 3, 052113 (2013).   DOI
37 A. Prakash, J. Ouyang, J.-L. Lin, and Y. Yang, J. Appl. Phys. 100, 054309 (2006).   DOI