Browse > Article
http://dx.doi.org/10.5229/JECST.2013.4.4.153

Charge Transfer between STM Tip and Au(100) in Dry, H2O, and D2O Atmospheres  

Utami, Anggi (Department of Advanced Materials Chemistry, Korea University)
Chung, Yonghwa (Department of Advanced Materials Chemistry, Korea University)
Lee, Chi-Woo (Department of Advanced Materials Chemistry, Korea University)
Publication Information
Journal of Electrochemical Science and Technology / v.4, no.4, 2013 , pp. 153-156 More about this Journal
Abstract
Charge transfer between STM tip and Au(100) has been investigated by using a Scanning Tunneling Microscopy (STM) technique in dry, $H_2O$, and $D_2O$ atmospheres. Dry atmosphere was indicated by humidity as low as 5 % and high humidity as high as 98% was managed by injecting $H_2O$ and $D_2O$ to the chamber. The current decayed more slowly in high humidity than in dry atmosphere. The plateau currents were found to appear at separations larger than ca. $5{\AA}$ where the current decay stopped depending on applied bias voltages. The polarity dependence was observed at the STM junction between Pt-Ir tip and the gold. On the contrary, little dependence was seen at the one between Au tip and the substrate electrode.
Keywords
STM; Charge transfer; Interfacial water; Pt-Ir tip; Au tip;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy; Methods and Applications, Cambridge, New York, (1994).
2 R. Schuster, J.V. Barth, J. Wintterlin, R.J. Behm and G. Ertl, Ultramicroscopy, 42-44, 533 (1992).   DOI   ScienceOn
3 H.J. Mamin, E. Ganz, D.W. Abraham, R.E. Thomson and J. Clarke, Phys. Rev. B, 34, 9015 (1986).   DOI   ScienceOn
4 C.S. Cucinotta, I. Rungger and S. Sanvito, J. Phys. Chem. C, 116, 22129 (2012).   DOI   ScienceOn
5 T. Albrecht, Nature Comm., 3, DOI : 10.10381/ncomms1791 (2012).
6 C.F.A. Negre, G.E. Jara, D.M.A. Vera, A.B. Pierini and C.G. Sanchez, J. Phys.: Condens. Matter, 23, 245305 (2011).   DOI   ScienceOn
7 A.A. Arabi and C.F. Matta, Phys. Chem. Chem. Phys., 13, 13738 (2011).   DOI   ScienceOn
8 D. Rai, A.D. Kulkarni, S.P. Geiji, L.J. Bartolotti, R.K. Pathak, J. Chem. Phys., 138, 044304 (2013).   DOI   ScienceOn
9 J.-H. Ahn and M.-H. Pyo, Bull. Korean Chem. Soc., 21, 644 (2000).
10 M.-B. Song, J.-M. Jang and C.-W.Lee, Bull. Korean Chem. Soc., 23, 71 (2002).   DOI   ScienceOn
11 M.-B. Song, J.-M. Jang., S.-E. Bae and C.-W. Lee, Langmuir, 18, 2780 (2002).   DOI   ScienceOn
12 J.-S. Yoon, S.-E. Bae., J.-H. Yoon and C.-W. Lee, Electrochim. Acta, 50, 4230 (2005).   DOI   ScienceOn
13 S. Yagyu and M. Yoshitake, Surf. Interface Anal., 36, 1110 (2004).   DOI   ScienceOn
14 L. Olesen, M. Brandbyge, M.R. Sorensen, K.W Jacobsen, E. Laegsgaard, I. Stensgaard and F. Besenbacher, Phys. Rev. Lett., 76, 1485 (1996).   DOI   ScienceOn
15 S.C. Meepagala and F. Real., Phys. Rev. B, 49, 10761 (1994).   DOI   ScienceOn
16 L. de la Vega, A. Martin-Rodero, A.L. Yeyati and A. Saul, Phys. Rev. B, 70, 113107 (2004).   DOI   ScienceOn
17 W. Mizutani, T. Ishida, N. Choi, T. Uchihashi, and H. Tokumoto, Appl. Phys. A, 72, S181 (2001).   DOI
18 C. Sirvent, J.G. Rodrigo, S. Vieira, L. Jurczyszyn, N. Mingo and F. Flores, Phys. Rev. B, 53, 16086 (1996).   DOI   ScienceOn
19 E. Tartaglini T.G.A. Verhagen, F. Galli, M.L. Trouwborst, R. Muller, T. Shiota, J. Aarts and J.M. van Ruitenbeek, Low Temp. Phys., 39, 189 (2013).   DOI   ScienceOn
20 N.E. Singh-Miller and N. Marzari, Phys. Rev. B, 80, 235407 (2009).   DOI   ScienceOn