• Title/Summary/Keyword: Charge transfer efficiency

Search Result 126, Processing Time 0.021 seconds

Effect of Cathodic Biofilm on the Performance of Air-Cathode Single Chamber Microbial Fuel Cells

  • Ahmed, Jalal;Kim, Sung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3726-3729
    • /
    • 2011
  • Biofilm formation is inevitable in a bioelectrochemical system in which microorganisms act as a sole biocatalyst. Cathodic biofilm (CBF) works as a double-edged sword in the performance of the air-cathode microbial fuel cells (MFCs). Proton and oxygen crossover through the CBF are limited by the robust structure of extracellular polymeric substances, composition of available constituents and environmental condition from which the biofilm is formed. The MFC performance in terms of power, current and coulombic efficiency is influenced by the nature and origin of CBF. Development of CBF from different ecological environment while keeping the same anode inoculums, contributes additional charge transfer resistance to the total internal resistance, with increase in coulombic efficiency at the expense of power reduction. This study demonstrates that MFC operation conditions need to be optimized on the choice of initial inoculum medium that leads to the biofilm formation on the air cathode.

Electrochemical properties of metal salts polymer electrolyte for DSSC (금속염을 이용한 염료감응 태양전지의 고체전해질의 전기화학적 특성)

  • Zhao, Xing Guan;Jin, En Mei;Gu, Hal-Bon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.55.1-55.1
    • /
    • 2011
  • Dye-sensitized solar cell(DSSC) have been considered one of the promising alternatives to conventional solar cells, because of their low cost, easy fabrication and relatively high energy conversion efficiency. However, although the cell offers reasonable efficiency at least 11%, the use of a liquid electrolyte placed technological challenges for achieving the desired durability and operational stability of the cell. In order to prevent or reduce electrolyte leakage considerable efforts have been made, such as p-type semiconductor or organic hole-transport material that better mechanical properties and simple fabrication processes. In this work, we synthesized solid-state electrolyte containing LiI and KI metal salt with starting materials of poly ethylene oxide to substitute liquid electrolyte enhance the ionic conductivity and solar conversion efficiency. Li+ leads to faster diffusion and higher efficiency and K+ leading to higher ionic conductivity. The efficiency of poly ethylene oxide/LiI system electrolyte is 1.47% and poly ethylene oxide/potassium electrolyte is 1.21%. An efficiency of 3.24% is achieved using solid-state electrolyte containing LiI and KI concentrations. The increased solar conversion efficiency is attributed to decreased crystallinity in the polymer that leads to enhanced charge transfer.

  • PDF

Experiment of Characteristic on the Charge and Discharge of Cold for In-Water Harvest-Type Ice Storage System (수중 하베스트형 빙축열 시스템의 축방냉 특성)

  • Jang, Y.S.;Choi, I.S.;Moon, C.G.;Chun, S.H.;Kim, J.D.;Yoon, J.I.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.268-273
    • /
    • 2001
  • A fundamental study on the harvest-type ice storage system applied ice making method in-water and its temperature characteristics in ice storage system was performed experimentally of the charge and discharge of cold. This paper is concerned with the development of a new method for making and separating ice and saving floated ice by installing an evaporation plate at in-water within a storage tank. In a conventional harvest-type ice storage system, a tank saves ice by separating a formed ice from an installed evaporation plate, which is located above an ice storage tank as an ice storage system. A new harvest-type method shows very good heat transfer efficiency than a convectional method. It is because the evaporation panel is directly contacted with water in a storage tank. Also, at a conventional system a circulating pump, a circulating water distributor and a piping are installed, but these components are not necessary in a new method. In this study two kinds of ice storage systems are experimentally investigated to study the thermal characteristics of ice storage tanks.

  • PDF

A Three-Port Bidirectional Modular Circuit for Li-Ion Battery Strings Charge/Discharge Equalization Applications (리튬-이온 배터리 충방전 균등화를 위한 3-단자 양방향 모듈 회로)

  • Lee, Kui-Jun;Park, Nam-Ju;Wang, Xiongfei;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.37-39
    • /
    • 2008
  • In this paper, a three-port bidirectional modular circuit applied in charging and discharging equalization for lithium-ion battery strings is proposed. This circuit consists of four MOSFETs and one transformer which provide a simple structure to be easily modularized. Compared to conventional individual cell equalization schemes, it utilizes the transformer as the energy transfer element, allowing direct transfer of energy between arbitrary two cells of three-cell battery module, thus improving the equalization efficiency significantly by using much less number of equalizers for long battery strings. Simulation results are presented to validate the circuit operation and confirm its capability to equalize the three-cell battery module.

  • PDF

Implementation of Dual Cycle in Container Yard based on Ad-hoc Networks (Ad-hoc 네트워크 기반의 컨테이너장치장의 Dual Cycle 구현)

  • Park, Doo-Jin
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.4
    • /
    • pp.998-1007
    • /
    • 2013
  • At container terminals, a major measurement of productivity can be work efficiency. For improving the productivity of container crane, the more efficient container yard operation method is necessary in container terminals. Recently, container terminal operators make an experiment on the dual cycle operation, which ship loading/unloading were carried out simultaneously, for increasing the productivity of container crane. In this paper, propose a system operating efficient dual cycle methods as utilize Ad-hoc technology in distributed port operation system. The dual cycle methods that proposed recognizes position information of Y/T during an action in Ad-hoc networks in case of container transfer works by real time as load an Ad-hoc module to Y/T taking charge of a container transfer with quay and yard. Utilize Ad-hoc networks technology in an operating system of container yard, and efficiently distributed processing done Y/T to container crane compare with operation systems of the existing dedicated method, and an improvement can do an operating system of an yard.

Excitation Mechanism of Fluorescent Polycyclic Aromatic Amines and Polycyclic Aromatic Hydrocarbons in Peroxyoxalate Chemiluminescence Reactions

  • Sung Chul Kang;Kang-Jin Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.3
    • /
    • pp.224-227
    • /
    • 1990
  • The excitation mechanism of polycyclic aromatic amines (amino-PAHs) and polycyclic aromatic hydrocarbons(PAHs) for the chemiluminescence arising from the reaction between oxalate ester, bis(2,4,6-trichlorophenyl)oxalate (TCPO) or bis(2,4-dinitrophenyl)oxalate (DNPO) and hydrogen peroxide has been studied in terms of the excitation efficiencies to singlet excitation energies and the oxidative half-wave potentials. As a results of the study, the excitations of both amino-PAHs and PAHs appear to involve the charge transfer type of energy transfer. However the chemiluminescence efficiency corrected for fluorescence quantum yield of the amino-PAHs are varied more sensitively to the oxidative half-wave potential than that of PAHs possibly due to the large difference in solvation energy between the compounds and their ions.

Fabrication and Output Characteristics of Compact Capacitor Transfer XeCl Laser (용량이행영 소형 XeCl레이저 제작 및 출력특성)

  • 김동환
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.57-65
    • /
    • 1993
  • Small XeCl laser of charge transfer discharge excitation was fabricated and output charateristics were investigated according to gas mixture ratio. Beam cross section of 2.7cm${\times}$1.5cm was obtained by constructing excimer laser which preionization is operated automatically and which has chang profile electrode. According to the component gas mixture ratio, the condition of maximum output energy, efficiency were investigated. The maximum energy, efficiency and specific energy were obtained 230 mJ, 1.6% and 1.1 J/l, respectively. The long pulse effect is observed by constructing low peaking to main capacitance ratio of 1:3.

  • PDF

Platinum Decoration of a 3D Oxidized Graphitic Carbon Nitride/Graphene Aerogel for Enhanced Visible-Light Photocatalytic Hydrogen Evolution

  • Thi Kieu Oanh Nguyen;Thanh Truong Dang;Tahereh Mahvelati-Shamsabadi;Jin Suk Chung
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.627-634
    • /
    • 2023
  • Graphitic carbon nitride (g-C3N4) has attracted considerable attention since its discovery for its catalysis of water splitting to hydrogen and oxygen under visible light irradiation. However, pristine g-C3N4 confers only low photocatalytic efficiency and requires surface cocatalysts to reach moderate activity due to a lack of accessible surface active sites. Inspired by the high specific surface area and superior electron transfer of graphene, we developed a strongly coupled binary structure of graphene and g-C3N4 aerogel with 3D porous skeleton. The as-prepared 3D structure photocatalysts achieve a high surface area that favors efficient photogenerated charge separation and transfer, enhances the light-harvesting efficiency, and significantly improves the photocatalytic hydrogen evolution rate as well. The photocatalyst performance is observed to be optimized at the ratio 3:7 (g-C3N4:GO), leading to photocatalytic H2 evolution of 16125.1 mmol. g-1. h-1 under visible light irradiation, more than 161 times higher than the rate achieved by bulk g-C3N4.

Efficiency Factors of Singlet Oxygen Generation from Core-Modified Expanded Porphyric : Tetrathiarubyrin in Ethanol

  • Ha, Jeong Hyeon;Jeong, Guk Yeong;Kim, Min Seon;Lee, Yang Hun;Sin, Gu;Kim, Yong Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.63-67
    • /
    • 2001
  • The photophysical properties and the singlet oxygen generation efficiency of tetrathiarubyrin have been investigated to elucidate the possibility of its use as a photodynamic therapy (PDT) photosensitizer by steady-state and time-resolved spectroscopic methods. The observed photophysical properties were affected by various molecular aspects, such as extended ${\pi}conjugation$, structural distortion, and internal heavy atom. The steady-state electronic absorption spectrum was red-shifted due to the extended $\pi-conjugation$, and the spin orbital coupling was enhanced by the structural distortion and the internal heavy atom effect. As a result of the enhanced spin orbital coupling, the triplet quantum yield increased to 0.90 $\pm$ 0.10 and the triplet state lifetime was shortened to 7.0 $\pm$ 1.2 ${\mu}s$. Since the triplet state decays at a relatively faster rate, the efficiency of the oxygen quenching of the triplet state decreases. The singlet oxygen quantum yield was estimated to be 0.52 $\pm$ 0.02, which is somewhat lower than expected. On the other hand, the efficiency of singlet oxygen generation during the oxygen quenching of triplet state, $f{\Delta}^T$, is near unity. Such high efficiency of singlet oxygen generation can be explained by the following two possible factors: The hydrogen bonding of ethanol which impedes the deactivation pathway of the charge transfer complex with oxygen to the ground state, the less probability of the aggregation formation.

Facile Synthesis of g-C3N4 Modified Bi2MoO6 Nanocomposite with Improved Photoelectronic Behaviors

  • Zhu, Lei;Tang, Jia-Yao;Fan, Jia-Yi;Sun, Chen;Meng, Ze-Da;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.593-600
    • /
    • 2021
  • Herein, a series of g-C3N4 modified Bi2MoO6 nanocomposites using Bi2MoO6 and melamine as original materials are fabricated via sintering process. For presynthesis of Bi2MoO6 an ultrasonic-assisted hydrothermal technique is researched. The structure and composition of the nanocomposites are characterized by Raman spectroscopy, X-ray diffraction (XRD), and high-resolution field emission scanning electron microscopy (SEM). The improved photoelectrochemical properties are studied by photocurrent density, EIS, and amperometric i-t curve analysis. It is found that the structure of Bi2MoO6 nanoparticles remains intact, with good dispersion status. The as-prepared g-C3N4/Bi2MoO6 nanocomposites (BMC 5-9) are selected and investigated by SEM analysis, which inhibits special morphology consisting of Bi2MoO6 nanoparticles and some g-C3N4 nanosheets. The introduction of small sized g-C3N4 nanosheets in sample BMC 9 is effective to improve the charge separation and transfer efficiency, resulting in enhancing of the photoelectric behavior of Bi2MoO6. The improved photoelectronic behavior of g-C3N4/Bi2MoO6 may be attributed to enhanced charge separation efficiency, photocurrent stability, and fast electron transport pathways for some energy applications.