• Title/Summary/Keyword: Charge penetration

Search Result 98, Processing Time 0.026 seconds

Poly-gate Quantization Effect in Double-Gate MOSFET (폴리 게이트의 양자효과에 의한 Double-Gate MOSFET의 특성 변화 연구)

  • 박지선;이승준;신형순
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.17-24
    • /
    • 2004
  • Quantum effects in the poly-gate are analyzed in two dimensions using the density-gradient method, and their impact on the short-channel effect of double-gate MOSFETs is investigated. The 2-D effects of quantum mechanical depletion at the gate to sidewall oxide is identified as the cause of large charge-dipole formation at the corner of the gate. The bias dependence of the charge dipole shows that the magnitude of the dipole peak-value increases in the subthreshold region and there is a large difference in carrier and potential distribution compared to the classical solution. Using evanescent-nude analysis, it is found that the quantum effect in the poly-gate substantially increases the short-channel effect and it is more significant than the quantum effect in the Si film. The penetration of potential contours into the poly-gate due to the dipole formation at the drain side of the gate corner is identified as the reason for the substantial increase in short-channel effects.

Pan-shaped Spray Characteristics of GDI High Pressure Slit Nozzle Injector (가솔린 직접분사식 고압 슬릿 노즐 분사기의 팬형 분무 특성 고찰)

  • Song, Bhum-Keun;Kim, Won-Tae;Kang, Shin-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.70-76
    • /
    • 2005
  • A new stratified charge combustion system has been introduced and developed for GDI engines. Before this new GDI system, the stratified mixture was formed by a high pressure swirl injector. But, the special feature of new system is employed of a thin fan-shaped fuel spray formed by a slit type nozzle. Also, this system has been adopted a shell-shaped piston cavity. We made high pressure gasoline injection system and investigated the fan-shaped spray characteristics such as spray tip penetration, spray angle, SMD and velocities of droplets using PDPA(Phase Doppler Particle Analyzer) system and spray visualization system to obtain the concept of the new design and the fundamental data for the next generation GDI system. The experiment was performed at the injection pressures of 5 and 9MPa under the atmospheric condition.

Dependency of the Device Characteristics on Plasma Nitrided Oxide for Nano-scale PMOSFET (Nano-scale PMOSFET에서 Plasma Nitrided Oixde에 대한 소자 특성의 의존성)

  • Han, In-Shik;Ji, Hee-Hwan;Goo, Tae-Gyu;You, Ook-Sang;Choi, Won-Ho;Park, Sung-Hyung;Lee, Heui-Seung;Kang, Young-Seok;Kim, Dae-Byung;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.569-574
    • /
    • 2007
  • In this paper, the reliability (NBTI degradation: ${\Delta}V_{th}$) and device characteristic of nano-scale PMOSFET with plasma nitrided oxide (PNO) is characterized in depth by comparing those with thermally nitrided oxide (TNO). PNO case shows the reduction of gate leakage current and interface state density compared to TNO with no change of the $I_{D.sat}\;vs.\;I_{OFF}$ characteristics. Gate oxide capacitance (Cox) of PNO is larger than TNO and it increases as the N concentration increases in PNO. PNO also shows the improvement of NBTI characteristics because the nitrogen peak layer is located near the $Poly/SiO_2$ interface. However, if the nitrogen concentration in PNO oxide increases, threshold voltage degradation $({\Delta}V_{th})$ becomes more degraded by NBT stress due to the enhanced generation of the fixed oxide charges.

Sympathetic Detonation Modeling of PBXN-109 (PBXN-109가 장전된 155 mm 고폭탄의 순폭현상 해석)

  • Kim, Bohoon;Kim, Minsung;Yang, Seungho;Oh, Sean;Kim, Jinseok;Choi, Sangkyung;Yoh, Jai-Ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.1-11
    • /
    • 2014
  • Sympathetic detonation (SD) of high explosives occurs when a detonating donor initiates neighboring acceptors. The present study focuses on the hydrodynamic simulation of one-on-one sympathetic detonation of 155 mm charge filled with PBXN-109. Both unbuffered and buffered SD configurations are performed while changing the distance between each charge, in order to investigate the detonation sensitivity to a donor initiation. The cause of a SD is by a shock impact for the unbuffered case at a close range, while at a distant range, blast fragment penetration is the primary cause. The buffers can reduce the incident sensitivity to a SD by reducing the strengths of shock wave and impinging fragments.

Influence of the Charged Explosives on the Steel Plate Cutting Performance in Bent-Shaped Charge Holder Blasting (드로잉 가공 성형폭약용기를 이용한 강재구조 발파공법에서 사용폭약의 종류가 절단성능에 미치는 영향)

  • Kim, Gyeong-Gyu;Park, Hoon;Min, Gyeong-Jo;Shin, Chan-Hwi;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • As the national economic growth and the rapid increase in industrial structures are aging, the demand for removing steel structures is increasing, and research on improving the penetration performance of the linear shape charge explosives. In the study, numerical analyses were performed on the effect of the type of explosive used in the self-made shape charging container and the initiation method on the cutting performance of the steel plate and the effect on the shaped explosive installed close to it. ANSYS LS-DYNA, which can analyze the large deformation problem of materials due to explosion, was used, and an ALE(Arbitrary-Lagrange-Eulerian) model was applied that enables interlocking analysis of gases, liquids, and solid.

Estimation on the Sulfate Ion Diffusivity in Concrete by Accelerated Test (촉진시험에 의한 콘크리트중의 황산이온 확산계수 추정)

  • 문한영;김성수;김홍삼;이승태;최두선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.425-428
    • /
    • 2000
  • When concrete structures are exposed to sulfate or marin environments, sulfate ions penetrated into concrete make it deteriorate. An accelerated test under potential difference method was performed to evaluate not only the sulfate ion diffusivity in ordinary portland cement and ground granulated blast-furnace slag cement concretes but the effect of slag replacement and water-cement ratio on the sulfate ions diffusivity. As the result of this study, we assumed the sulfate ion diffusivity was significantly related with total passed charge and initial current in concrete. Moreover sulfate ions penetration resistance of ordinary portland cement concrete was superior to that of ground granulated blast-furnace slag cement concrete.

  • PDF

Low-voltage cathodoluminescent Characteristics of ZnGa$_2$O$_4$ : Mn phosphors

  • 조성희;유재수;이종덕;이중환
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.1
    • /
    • pp.57-62
    • /
    • 1997
  • Green-emitting $ZnGa_2O_4$ : Mn phosphors were synthesized by a thermal method and their low-voltage cathodoluminescent characteristics were examined for the field emitter display (FED) application. Low efficiency of $ZnGa_2O_4$ : Mn phosphors could be ascribed to the low penetration depth of into phosphors, which might results in charge accumulation on the phosphors screen. For increasing cathodoluminescent of $ZnGa_2O_4$ : Mn under low voltage excitation, wide band-gap oxide materials were added to the $ZnGa_2O_4$: Mn powder. It is found that the luminance can be increased by 20%. Measurement of leakage current on the phosphor screen shows that the enhancement of low-voltage cathodoluminescent by additive materials is mainly due to the consumption of surface charges on the phosphor.

  • PDF

Resonance Characteristics of THz Metamaterials Based on a Drude Metal with Finite Permittivity

  • Jun, Seung Won;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.378-382
    • /
    • 2018
  • In most previous investigations of plasmonic and metamaterial applications, the metallic film has been regarded as a perfect electrical conductor. Here we demonstrate the resonance characteristics of THz metamaterials fabricated from metal film that has a finite dielectric constant, using finite-difference time-domain simulations. We found strong redshift and spectral broadening of the resonance as we decrease the metal's plasma frequency in the Drude free-electron model. The frequency shift can be attributed to the effective thinning of the metal film, originating from the increase in penetration depth as the plasma frequency decreases. On the contrary, only peak broadening occurs with an increase in the scattering rate. The metal-thickness dependence confirms that the redshift and spectral broadening occur when the effective metal thickness drops below the skin-depth limit. The electromagnetic field distribution illustrates the reduced field enhancement and reduced funneling effects near the gap area in the case of low plasma frequency, which is associated with reduced charge density in the metal film.

Research on the Penetrator Characteristics and Flight Stability of Explosively Formed Penetrator (EFP 관통자 특성과 비행 안정성에 대한 연구)

  • Yi, Youngsun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.355-362
    • /
    • 2020
  • EFP composed of explosive, charge and liner generally penetrates standoff a target by Monroe effect. Its performance highly depends on penetrator characteristics and flight stability. Penetration ability can be dramatically reduced when the penetrator reaches the target with AOA, even if the penetrator has high kinetic energy and L/D ratio. Therefore, it is important to research not only penetrator characteristics and but also flight stability. In this work, the effect of liner shape on penetrator characteristics was examined using free flight test and numerical tools. It was found that tip velocity of penetrator was increased with decreasing liner thickness. It was also found that thicker liner had higher static margin leading to better flight status.

Modulation of electroosmosis using penetration enhancers

  • Kim, Su-Youn;Lee, Yeon-Joo;Lee, Hyung-Won;Lee, Hyo-Jung;Lee, Seung-Yeon;Youe, Jee-Sun;Oh, Seaung-Youl
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.293.1-293.1
    • /
    • 2003
  • Electroosmotic flux during iontophoresis originates due to the net negative charge of the current passing channels (pores) in skin at physiological pH (pH 7.4). Thus, the channels are permselective to cations, and this causes the convective solvent flow from anode to cathodal direction. This solvent flow facilitates the flux of cations (from anode), inhibits that of anions (from cathode), and enables theenhanced transport of neutral, polar solutes. (omitted)

  • PDF