• Title/Summary/Keyword: Charge dose

Search Result 75, Processing Time 0.021 seconds

Carrier Lifetime Analysis of Proton Irradiated SOl Wafer with Pseudo MOSFET Technology (Pseudo MOSFET 기술에 의한 양성자 조사 SOl 웨이퍼의 캐리어 수명 분석)

  • Jung, Sung-Hoon;Lee, Yong-Hyun;Lee, Jae-Sung;Kwon, Young-Kyu;Bae, Young-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.732-736
    • /
    • 2009
  • Protons are irradiated into SOl wafers under total dose of 100 krad, 500 krad, 1 Mrad and 2 Mrad to analyze the irradiation effect. The electrical properties are analyzed by pseudo MOSFET technology after proton irradiation. The wafers are annealed to stabilize generated defects in a nitrogen atmosphere at $300^{\circ}C$ for 1 hour because proton irradiation induces a lot of unstable defects in the surface silicon film. Both negative and positive turn-on voltages are shifted to negative direction after the irradiation. The more proton total dose, the more turn on voltage shifts. It means that positive oxide trap charge is generated in the buried oxide(BOX). The minority carrier lifetime which is analyzed by the drain current transient characteristics decreases with the increase of proton total dose. The proton irradiation makes crystal defects in the silicon film, and consequently, the crystal defects reduce the carrier lifetime and mobility. As these results, it can be concluded that pseudo MOSFET is a useful technology for the analysis of irradiated SOI wafer.

Feasibility Study of Parallel- Plate Detector Using Dielectric film for 6 MV X-ray (6MV X-선 검출특성 조사를 위하여 유전체 필름을 이용하여 제작한 평행판 검출기의 유용성)

  • 조문준;김용은;이병용;김정기;임상욱;김현수;김기환
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.105-111
    • /
    • 2004
  • The parallel plate detector with dielectric film for dosimetry was designed to measure detection characteristic of 6 MV X-ray with medical linear accelerator. PTFE film was inserted into FEP films that are made by two one-side metal coated materials for ion source. The thicknesses of PTFE dielectric film was 100 ${\mu}{\textrm}{m}$ and the thickness of FEP dielectric film was 100 ${\mu}{\textrm}{m}$, respectively. This detector was fixed by two acrylic plate for physical hardness ad geometrical consistency. The geometrical condition for measurement with parallel-plate for detector was below; SSD=100 cm and the 5 cm depth between detector and phantom surface The major parameter of detector characteristics such as zero drift current, leakage current, charge response by applied voltage, reproducibility, linearity, TMR measurement, dose rate effect were measured. The zero drift currents are 8.3 pA and leakage currents are 10 pA. The charge response of applied voltage is showing linearity in 414 voltage. The measurement deviation of reproducibility in this detector is within 1% for dose and the linearity of applied dose shows in this detector. The TMR curves in phantom between this parallel plate detector and reference detector are matched within 3% deviation from maximum dose depth to 7.5 cm depth. It is considered that this dosimetric system is satisfactory for the purpose of the constancy check of the 6 MV x-ray from medical linear accelerator.

  • PDF

Development of DAP(Dose Area Product) for Radiation Evaluation of Medical and Industrial X-ray generator (의료 및 산업용 X-선 발생장치의 선량평가를 위한 면적선량계(DAP) 개발)

  • Kwak, Dong-Hoon;Lee, Sang-Heon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.495-498
    • /
    • 2018
  • In this paper, we propose an DAP system for dose evaluation of medical and industrial X-ray generator. Based on the DAP measurement technique using the Ion-Chamber, the proposed system can clearly measure the exposure radiation dose generated by the diagnostic X-ray apparatus. The hardware part of the DAP measures the amount of charge in the air that is captured by an X-ray. The high-speed processing algorithm part for cumulative radiation dose measurement through microcurrent measures the amount of charge captured by X-ray at a low implementation cost (power) with no input loss. The wired/wireless transmission/reception protocol part synchronized with the operation of the X-ray generator improves communication speed. The PC-based control program part for interlocking and aging measures the amount of X-ray generated in real time and enables measurement graphs and numerical value monitoring through PC GUI. As a result of evaluating the performance of the proposed system in an accredited testing laboratory, the measured values using DAP increased linearly in each energy band (30, 60, 100, 150 kV). In addition, since the standard deviation of the measured value at the point of 4 division was ${\pm}1.25%$, it was confirmed that the DAP showed uniform measurements regardless of location. It was confirmed that the normal operation was not less than ${\pm}4.2%$ of the international standard.

Evaluating internal exposure due to intake of 131I at a nuclear medicine centre of Dhaka using bioassay methods

  • Sharmin Jahan;Jannatul Ferdous;Md Mahidul Haque Prodhan;Ferdoushi Begum
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2050-2056
    • /
    • 2024
  • Handling of radioisotopes may cause external and internal contamination to occupational workers while using radiation for medical purposes. This research aims to monitor the internal hazard of occupational workers who handle 131I. Two methods are used: in vivo or direct method and in vitro or indirect method. The in vivo or direct method was performed by assessing thyroid intake with a thyroid uptake monitoring machine. The in vitro or indirect method was performed by assessing urine samples with the help of a gamma-ray spectroscopy practice using a High-Purity Germanium (HPGe) Detector. In this study, fifty-nine thyroid counts and fifty-nine urine samples were collected from seven occupational workers who were in charge of 131I at the National Institute of Nuclear Medicine and Allied Sciences (NINMAS), Dhaka. The result showed that the average annual effective dose of seven workforces from thyroid counts were 0.0208 mSv/y, 0.0180 mSv/y, 0.0135 mSv/y, 0.0169 m Sv/y, 0.0072 mSv/y, 0.0181 mSv/y, 0.0164 mSv/y and in urine samples 0.0832 mSv/y, 0.0770 mSv/y, 0.0732 mSv/y, 0.0693 mSv/y, 0.0715 mSv/y, 0.0662 mSv/y, 0.0708 mSv/y.The total annual effective dose (in vivo and in vitro method) was found among seven workers in average 0.1039 mSv/y, 0.0950 mSv/y, 0.0868 mSv/y, 0.0862 mSv/y, 0.0787 mSv/y, 0.0843 mSv/y, 0.0872 mSv/y. Following the rules of the International Commission on Radiological Protection (ICRP), the annual limit of effective dose for occupational exposure is 20 mSv per year and the finding values from this research work are lesser than this safety boundary.

Development of Signal Processing Modules for Double-sided Silicon Strip Detector of Gamma Vertex Imaging for Proton Beam Dose Verification (양성자 빔 선량 분포 검증을 위한 감마 꼭지점 영상 장치의 양면 실리콘 스트립 검출기 신호처리 모듈 개발)

  • Lee, Han Rim;Park, Jong Hoon;Kim, Jae Hyeon;Jung, Won Gyun;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.2
    • /
    • pp.81-88
    • /
    • 2014
  • Recently, a new imaging method, gamma vertex imaging (GVI), was proposed for the verification of in-vivo proton dose distribution. In GVI, the vertices of prompt gammas generated by proton induced nuclear interaction were determined by tracking the Compton-recoiled electrons. The GVI system is composed of a beryllium electron converter for converting gamma to electron, two double-sided silicon strip detectors (DSSDs) for the electron tracking, and a scintillation detector for the energy determination of the electron. In the present study, the modules of a charge sensitive preamplifier (CSP) and a shaping amplifier for the analog signal processing of DSSD were developed and the performances were evaluated by comparing the energy resolutions with those of the commercial products. Based on the results, it was confirmed that the energy resolution of the developed CSP module was a little lower than that of the CR-113 (Cremat, Inc., MA), and the resolution of the shaping amplifier was similar to that of the CR-200 (Cremat, Inc., MA). The value of $V_{rms}$ representing the magnitude of noise of the developed system was estimated as 6.48 keV and it was confirmed that the trajectory of the electron can be measured by the developed system considering the minimum energy deposition ( > ~51 keV) of Compton-recoiled electron in 145-${\mu}m$-thick DSSD.

Study on the Fluence and LET Distribution of Projectile Fragments Produced from Heavy Ion Therapeutic Beams

  • Komori, Masataka;Fukumura, Akifumi;Hirai, Masaaki;Kanai, Tatuaki;Kohno, Ryosuke;Kohno, Toshiyuki;Matsufuji, Naruhiro;Nanbu, Syuya;Nishio, Teiji
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.216-218
    • /
    • 2002
  • Fluence and LET spectrum for 290,400 MeV/u $\^$12/C and 400 MeV/u $\^$20/Ne beams have been measured by a $\Delta$E-E counter telescope. Total charge-changing cross sections are deduced from measured fluence. The measured cross sections agree with previous measurements, however, they are disagreement with a model calculation. To dose-averaged LETs, the model calculation can reproduce the measured LETs except for peak LETs at Bragg peak region.

  • PDF

Optimal Exposure Conditions according to Detector Type in Chest Digital Radiography (디지털흉부X선촬영에서 검출기 방식에 따른 최적의 노출조건)

  • Lee, Won-Jeong
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.213-221
    • /
    • 2015
  • The aim of this study was to set up the optimal exposure condition according to detector type considering image quality (IQ) with radiation dose in chest digital radiography. We used three detector type such as flat-panel detector (FP) and computed radiography (CR), and charge-coupled device (CCD). Entrance surface dose (ESD) was measured at each exposure condition combined tube voltage with tube current using dosimeter, after attaching on human phantom, it was repeated 3 times. Phantom images were evaluated independently by three chest radiologists after blinding image informations. Standard exposure condition using each institution was 117 kVp-AEC at FP and 117 kVp-8 mAs at CR, and 117 kVp-8 mAs at CCD. Statistical analysis was performed by One way ANOVA (Dunnett T3 test) using SPSS ver. 19.0. In FP, IQ scores were not significant difference between 102 kVp-4 mAs and 117 kVp-AEC (28.4 vs. 31.1, p=1.000), even though ESD was decreased up to 50% ($62.3{\mu}Gy$ vs. $125.1{\mu}Gy$). In CR, ESD was greatly decreased from 117 kVp-8 mAs to 90 kVp-8 mAs without significant difference of IQ score (p=1.000, 24.6 vs. 19.5). In CCD, IQ score of 117 kVp-8 mAs was similar with 109 kVp-8 mAs (29.6 vs. 29.0), with decreasing from $320.8{\mu}Gy$ to $284.7{\mu}Gy$ (about 11%). We conclude that optimal x-ray exposure condition for chest digital radiography is 102 kVp-4 mAs in FP and 90 kVp-8 mAs in CR, and 109 kVp-8 mAs in CCD.

Nitrogen and Phosphorus Removal Efficiency of Aluminum Usage in DEPHANOX Process (DEPHANOX 공정 내 알루미늄 첨가에 따른 질소 및 인 제거 효율 평가)

  • Lee, Beom;Park, Noh-Back;Tian, Dong-Jie;Heo, Tae-Young;Jun, Hang-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.5
    • /
    • pp.295-303
    • /
    • 2012
  • Removal of total nitrogen (T-N) and total phosphorus (T-P) was evaluated in a DEPHANOX process by adding Al(III) to the separator to maintain T-P in the final effluent below 0.2 mg/L. pH in each reactor was maintained 7~8 after addition of Al(III) to the levels of 5, 10, 15 mg/L. The removal efficiency of COD and T-N decreased at higher Al(III) dose, but T-P removal efficiency increased from 76.28 to 84.02, 94.66% at Al(III) dose of 5, 10, 15 mg/L, respectively. T-P in effluent showed 0.17 mg/L at Al(III) dose of 15 mg/L. Minimum 15 mg/L of Al(III) was required to maitain T-P below 0.2 mg/L in the final effluent.

High energy swift heavy ion irradiation and annealing effects on DC electrical characteristics of 200 GHz SiGe HBTs

  • Hegde, Vinayakprasanna N.;Praveen, K.C.;Pradeep, T.M.;Pushpa, N.;Cressler, John D.;Tripathi, Ambuj;Asokan, K.;Prakash, A.P. Gnana
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1428-1435
    • /
    • 2019
  • The total ionizing dose (TID) and non ionizing energy loss (NIEL) effects of 100 MeV phosphorous ($P^{7+}$) and 80 MeV nitrogen ($N^{6+}$) ions on 200 GHz silicon-germanium heterojunction bipolar transistors (SiGe HBTs) were examined in the total dose range from 1 to 100 Mrad(Si). The in-situ I-V characteristics like Gummel characteristics, excess base current (${\Delta}I_B$), net oxide trapped charge ($N_{OX}$), current gain ($h_{FE}$), avalanche multiplication (M-1), neutral base recombination (NBR) and output characteristics ($I_C-V_{CE}$) were analysed before and after irradiation. The significant degradation in device parameters was observed after $100MeV\;P^{7+}$ and $80MeV\;N^{6+}$ ion irradiation. The $100MeV\;P^{7+}$ ions create more damage in the SiGe HBT structure and in turn degrade the electrical characteristics of SiGe HBTs more when compared to $80MeV\;N^{6+}$. The SiGe HBTs irradiated up to 100 Mrad of total dose were annealed from $50^{\circ}C$ to $400^{\circ}C$ in different steps for 30 min duration in order to study the recovery of electrical characteristics. The recovery factors (RFs) are employed to analyse the contribution of room temperature and isochronal annealing in total recovery.

Suppression of Gate Oxide Degradation for MOS Devices Using Deuterium Ion Implantation Method

  • Lee, Jae-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.188-191
    • /
    • 2012
  • This paper introduces a new method regarding deuterium incorporation in the gate dielectric including deuterium implantation and post-annealing at the back-end-of-the process line. The control device and the deuterium furnace-annealed device were also prepared for comparison with the implanted device. It was observed that deuterium implantation at a light dose of $1{\times}10^{12}-1{\times}10^{14}/cm^2$ at 30 keV reduced hot-carrier injection (HCI) degradation and negative bias temperature instability (NBTI) within our device structure due to the reduction in oxide charge and interface trap. Deuterium implantation provides a possible solution to enhance the bulk and interface reliabilities of the gate oxide under the electrical stress.